A hybrid metaheuristic for production planning

Jodo Pedro PEDROSO
Universidade do Porto, Portugal

jpp@ncc.up.pt

Makoto OHNISHI
Fujitsu Research Institute, Japan
ohnishi@fri.fujitsu.com

Mikio KUBO
Tokyo University of Marine Science and Technology, Japan
kubo®@e.kaiyodai.ac.jp

MIC, Vienna, August 2005

Introduction

This work deals with two problems arising in production planning:

lot sizing
scheduling

usually these problems are treated separately
for both problems: exact solution can be rather hard

appropriate solvers are different:

— lot sizing —— mixed integer programming (MIP)
— scheduling —— constraint programming
metaheuristics: provide a unified framework

this work: focus on the integration

. Motivation
Practical problem:

— large industry

— stable demand

— production site where raw materials are transformed into end products.
Currently:

— scheduling operations come from customer orders

— scheduling based on feasibility: no notion of cost involved

— demand is stable — why not think about lot sizes?

Aim:

— formalise the problem

— lot sizing + scheduling — scheduling operations derived from good /optimal lot sizes
— implement a prototype

— check feasibility of the approach with nearly-real data

Planning:

— Short term (scheduling): monthly basis

— Medium term (lot sizing): yearly basis

Background

Previous work in this area: LISCOS European project

Exact approaches

MIP for lot sizing

Constraint programming for scheduling
Both are commercial solvers

Cost —— not appropriate for prototyping

—— metaheuristics

R
Demand

—

4 N

1

- RN

Machine Mochiy/
2
J

/

&

~

Machine

3

v

4 N

1

- RN

Machine | | Machine

2

v

N

&

~

Machine

3

v

t=1

=2

Lot sizing

Considering all the orders, for the whole of
the planning horizon, decide:

e quantity of each lot to be produced
e when to produce each lot

e (not concerned with order of production in
the machines)

s B\
Operations

_ J

e N 7 N\ (N
Machine | | Machine | | Machine
_] VAN 2 VAN 3 J

Scheduling

For each operation of a given period of the
lot sizing problem:

e assign it to a machine

e assign it an order in the operations of that
machine

e detail: machines can operate in several
modes:

— full capacity —— higher cost
— reduced capacity — lower cost

Time horizons

e are different for lot sizing and for scheduling
e horizon for scheduling «<— one period of lot sizing model

e usually: scheduling only for the first period of lot sizing

lot sizing
1,2 ,3,4,5,6 7,89 10,11, 12

1,2,3,4,5,6,7,8,9,10,11,12,13,14 15
scheduling

Main solution procedure

7| Solve lot Prepare
sizing prob scheduling

problem
Add constraint Solve
! scheduling
cutting current roblem
solution P

Y
Feasible? @

Lot sizing model

Costs:

— setup (fixed) costs

— variable production costs
— inventory

— backlog

Decision varibles:

— manufacture or not of a product in each period: setup, binary variable Y.
* Ypmt = 1 if product p is manufactured in machine m during period ¢
* Ypmt = O otherwise
— amount produced: continuous variable x
* corresponding to Ypmi.
* a:pmt>0jypmt:1
— inventory h,; and backlog g,

Objective

setup costs: F' = > 5> (D ieT fomt Ypmt
® fpm: is the cost of setting up machine m on period t for producing p

variable costs: V = ZpEP D o meM 2oteT Vpmt Tpmt
® v, is the variable cost of production of p on machine m, period ¢

inventory costs: I = > 5> 7 ipt hpt
® h,; is the amount of product p that is kept in inventory at the end of period ¢
® 7, is the unit inventory cost for product p on period ¢

backlog costs: B = > 5> ;c7 bpt gpt
® gpt is the amount of product p that failed to meet demand at the end of period ¢
e b, is the unit backlog cost for product p on period t.

objective: minimisez = F +V + 1+ B

Constraints:
flow conservation:

hp,t—l — Gp,t—1 + Z Lpmt = Dpt + hpt — Jpt v p e P, vteT.

meMP

hpo, hpr: initial and final inventory
gpo, gpr: initial and final backlog
time availability on each period:

Z (xpmt + Tpmt ypmt> < Aot VmeM,VteT.

peEP:me MP pm

Ypm is the total capacity of production of product p on machine m per time unit
Tpmt 15 the setup time required if there is production of p on machine m during period ¢
At 1s the number of time units available for production on machine m during period t.

setup constraints:

Lpmt S Ypm Amt Ypmt

10

minimise

subject to :

z=F+V +1+ B

F = y: y: y:fpmt Ypmt

pEP meM teT

V = y: y: y:’vpmt Lpmt

pEP meM teT

I:ZZipt h'pt

peEP teT
B33 b
peEP teT
hp,t—l — gp,t—1 + Z Lpmt = Dpt + hpt — Jpt; v p E Pa vieT

meMP
T
Z (pmt+7pmtypmt>§14mta VmeM,VteT
pEP:meMP Ypm
Lpmt SmeAmtypmt VpeP, VmeMP VteT

F.V,I,BeR"
hpt7 gptE]R+7 vaP,VtET
Tpmt € RT, Ypmt € {0,1}, VpeEP,VmeM,VteT 11

Construction: relax-and-fix-one-product

e construction of a solution: based on partial relaxations of the initial problem

e variant of the classic relax-and-fix heuristic

12

Relax-and-fix

e cach period is treated independently

T— -| e relax all the variables except those of period 1:
— keep ypm1 integer
.._2 — relax integrity for all other ypm.
- e solve this MIP, determining heuristic values
for Ypm1

13

Relax-and-fix

® cach period is treated independently

— e relax all the variables except those of period 1:

— keep ypm1 integer
4 — relax integrity for all other ypm:

e solve this MIP, determining heuristic values
for Ypma

e move to the second period:
— variables of the first period are fixed at

Ypml1l = gpml
— variables y,,2 are integer
-|-_T — and all the other y,,,; relaxed

e this determines the heuristic value for y,m2

14

Relax-and-fix

e cach period is treated independently
'|'— -| e relax all the variables except those of period 1:
— keep ypm1 integer
| 2 — relax integrity for all other ypm:
- e solve this MIP, determining heuristic values
for gpml
e move to the second period:
Do — variables of the first period are fixed at
Ypml1l = gpml
— variables y,,2 are integer
_|__-|- — and all the other y,,+ relaxed

e this determines the heuristic value for y,m2

e these steps are repeated, until all the y
variables are fixed

15

Relax-and-fix

e cach period is treated independently

'|'= -| e relax all the variables except those of period 1:
— keep ypm1 integer
_|__2 — relax integrity for all other Y+
- e solve this MIP, determining heuristic values
for Ypm1

e move to the second period:
Do — variables of the first period are fixed at
Ypml1l = gpml
— variables y,,,2 are integer
_|__-|- — and all the other y,,,+ relaxed

e this determines the heuristic value for y,m2

e these steps are repeated, until all the y
variables are fixed

16

Relax-and-fix heuristic.

reported to provide very good solutions for many lot sizing problems
however, for large instances the exact MIP solution of even a single period can be too time

consuming
we propose a variant were each MIP determines only the variables of one period that concern

a single product — relax-and-fix-one-product

17

Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()
T— -l (1) relax all ypm: as continuous variables
(2) fort=1to T
--=2 (3) foreach p € P

return y

)
(4) foreach m € M?P
(5) set Ypme as integer
(6) solve MIP— §pmt, Vm € MP
oo (7) foreach m € M?P
(8) fix Ypmt ‘= Ypmt
)

(9

18

Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()
T— -l (1) relax all ypm: as continuous variables
(2) fort=1to T
--=2 (3) foreach p € P

return y

)
(4) foreach m € M?P
(5) set Ypme as integer
(6) solve MIP— §pmt, Vm € MP
oo (7) foreach m € M?P
(8) fix Ypmt ‘= Ypmt
)

(9

19

Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()

return y

T—= -l (1) relax all ypm: as continuous variables

(2) fort =1to T
--=2 (3) foreach p € P

(4) foreach m € M?P

(5) set Ypme as integer

(6) solve MIP— §pmt, Vm € MP
oo (7) foreach m € M?P

(8) fix Ypmt ‘= Ypmt

)

20

Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()

T—= -l (1) relax all ypm: as continuous variables
(2) fort =1to T
--=2 (3) foreach p € P
(4) foreach m € M?P
(5) set Ypme as integer
(6) solve MIP— §pmt, Vm € MP
oo (7) foreach m € M?P
(8) fix Ypmt ‘= Ypmt
(9) return y

21

Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()

T—= -l (1) relax all ypm: as continuous variables
(2) fort =1to T
--=2 (3) foreach p € P
(4) foreach m € M?P
(5) set Ypme as integer
(6) solve MIP— §pmt, Vm € MP
oo (7) foreach m € M?P
(8) fix Ypmt ‘= Ypmt
(9) return y

22

Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()

T—= -l (1) relax all ypm: as continuous variables
(2) fort =1to T
--=2 (3) foreach p € P
(4) foreach m € M?P
(5) set Ypme as integer
(6) solve MIP— §pmt, VM € MP
oo (7) foreach m € M?P
(8) fix Ypmt ‘= Ypmt
(9) return y

23

Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()
(1) relax all ypm: as continuous variables

(2) fort=1to T
(3) foreachp € P
(4) foreach m € M?P
(5) set Ypme as integer
(6) solve MIP— §pmt, Vm € MP
(7) foreach m € M?P
(8) fix Ypmt ‘= Ypmt
)

return y

Additional advantage: if repeated, can
produce different solutions

—— repeat it a number of times, retain
the best found solution

24

Scheduling: solution representation

There are two decisions that have to be taken for specifying a scheduling solution:

e Assigning a machine to each operation

e Establish an order for the operations inside each machine

25

Assigning a machine to each operation

"'.‘I\/Iochih‘e}’_,l\'/ldchine ':'Iél\/lochine il\/lc:chine él\/lochine il\/lochine

el 2 8 123

Operation order for each machine

1T 2 3

1T 2 3

27

Solution evaluation (computing makespan and cost)

e Start scheduling operations which do not have
free (unscheduled) predecessors

T 2 3

28

Solution evaluation

e Start scheduling operations which do not have
free (unscheduled) predecessors

e Fix their earliest start time and earliest finish
time

29

Solution evaluation

e Start scheduling operations which do not have
free (unscheduled) predecessors

e Fix their earliest start time and earliest finish
time

e Check operations which can now be scheduled

1T 2 3

30

Solution evaluation

e Start scheduling operations which do not have

100 10 o :
2(1)-8& 2 ¥ 5 free (unscheduled) predecessors
| D ¥ 7 \ e Fix their earliest start time and earliest finish
12 7] @ : time
: e Check operations which can now be scheduled
|
| e Fix their start and finish times
|
! °
|
|
y

1T 2 3

31

Solution evaluation

e Start scheduling operations which do not have
free (unscheduled) predecessors

o Fix their earliest start time and earliest finish
time

e Check operations which can now be scheduled

o Fix their start and finish times

e changeover times/costs

e transfer times/costs

12 3

e fixed/variable productions times/costs

32

Random solution construction

":‘I\/Iochi'h‘e._‘_:.I\‘/Idchine {‘Machine -

e Check all operations that can be scheduled

33

Random solution construction

DU \ e Check all operations that can be scheduled
e Randomly select one of them (operation 1)

e Randomly select one of the compatible
machines (machine 1)

e Fix this operation

":‘I\/Iochihe.__:.l\‘/ldchine Machine :

34

Random solution construction

N \ e (operation 1 is fixed on machine 1)

e Check all operations that can be scheduled
(operations 2, 3, 4)

e Randomly select one of them (operation 2)

e Randomly select one of the compatible
machines (machine 2)

e Fix this operation

":‘I\/Iochihe.__:.l\‘/ldchine Machine :

35

Random solution construction

R \ e (operation 1 is fixed on machine 1)
e (operation 2 is fixed on machine 2)

e Check all operations that can be scheduled
(opertions 3, 4)

e Randomly select one of them (operation 4)

e Randomly select one of the compatible
machines (machine 1)

e Fix this operation

"x‘l\/lochir’ie._h_,l\/ldchine Machine :

36

Random solution construction

BRRESIRERLEEEEERIES N RS . e (operation 1 is fixed on machine 1)
e (operation 2 is fixed on machine 2)
e (operation 4 is fixed on machine 1)

e Check all operations that can be scheduled
(opertions 3, 5)

e Randomly select one of them . . .

e Randomly select one of the compatible
machines . . .

S} i3

e Until all operations are scheduled

37

Random solution construction

Produces a random, but feasible solution (except for violation of maximal makespan)
Very easy to implement
Can produce many different solutions

If repeated many times: might obtain a good solution

38

Greedy construction

[T \ e Check all operations that can be scheduled

e Compute the current makespan when they
are assigned to each of the possible machines

":‘I\/Iochi'h‘e._‘_:.I\‘/Idchine ‘‘Machine |

39

Greedy construction

e Check all operations that can be scheduled

e Compute the current makespan when they
are assigned to each of the possible machines

e Select the assignment which induces the
smallest makespan

e Fix this operation

":‘I\/Iochi'h‘e._‘_:.I\‘/Idchine ‘‘Machine |

40

Greedy construction

e Check all operations that can be scheduled

e Compute the current makespan when they
are assigned to each of the possible machines

e Select the assignment which induces the
smallest makespan

e Fix this operation

":‘I\/IoCHi'r'Te::,I\‘/Idchine " Machine :

41

Greedy construction

. \ e Check all operations that can be scheduled

e Compute the current makespan when they
are assigned to each of the possible machines

e Select the assignment which induces the
smallest makespan

e Fix this operation

e Continue this way until fixing all the
operations

":‘I\/IoCHi'r'Te::,I\‘/Idchine " Machine :

42

Semi-greedy construction

. \ e As in the greedy construction, we check all

the possibilities for each operation the can be
scheduled

e Compute the current makespan for each of
these possibilities

' be] [17]
a

":‘I\/IoCHi'r'Te::,I\‘/Idchine " Machine :

43

Semi-greedy construction

. \ e As in the greedy construction, we check all

the possibilities for each operation the can be
scheduled

e Compute the current makespan for each of
these possibilities

e Then, select just the possibilities that satisfy
some criterion

e Create a Restricted Candidate List (RCL)

e Randomly select an (operation, machine) pair
from the RCL

e Fix that operation on that machine

":‘I\/IoCHi'r'Te:_,.l\‘/Idchine 'Machine : ° ...

e Continue, until fixing all the operations

44

An algorithm for repeated construction

ITERATEDSEMIGREEDY (N ,t)
t* = oo

—~~
| —

¢’ = oo
forn=1to N
x = SEMIGREEDYCONSTRUCT()
t = MAKESPAN(x)
c = CosT(x)
if (t<tandc < c')or(t<t'andt* >t
=z, t"=t; ¢ =c
return z”

AN AN AN AN AN S N
O 00 N O 1 &~ W IN
— — N N N N N N

45

Main solution procedure (integration)

| {Solve lot Prepare

sizing prob scheduling
problem
Add constraint Solvel
cutting current scheauling
problem

solution

Y
Feasible?

46

“No good” cuts

Let
e y € {0, 1} be a partial MIP solution

e S = {r:y, =1} represent an assignment of tasks to machines

Then, if scheduling cannot find a feasible solution, add cut:

res

47

Cuts for capacity adjustment

Let

Zpmt be the production of item p on period ¢, machine k£
ZTpmt last MIP solution for these variables

I,,+ the heuristic estimate of machine waiting times

If we cannot find a feasible schedule of the tasks on period ¢, then

for the set of machines M ™ which did not respect the allowed makespan

add cut:
Z xpmtg Z a_jpmt_Imt vaM*

48

Main solution procedure

7| Solve lot Prepare
sizing prob scheduling

problem
Add constraint chgzﬁnng
cutting current problem

solution

Y
Feasible? @

49

Conclusion

Motivation: industrial application on production planning

Lot sizing and scheduling: exact solution difficult for both problems
Integrated model: even more difficult

Integration of the models has in itself a heuristic component
Proposed metaheuristics: there is potential for improvement, but
The method quickly provides implementable solutions

Results are sufficient for the current practical requirements

50

