
A hybrid metaheuristic for production planning

João Pedro PEDROSO

Universidade do Porto, Portugal

jpp@ncc.up.pt

Makoto OHNISHI

Fujitsu Research Institute, Japan

ohnishi@fri.fujitsu.com

Mikio KUBO

Tokyo University of Marine Science and Technology, Japan

kubo@e.kaiyodai.ac.jp

MIC, Vienna, August 2005

Introduction

This work deals with two problems arising in production planning:

• lot sizing

• scheduling

• usually these problems are treated separately

• for both problems: exact solution can be rather hard

• appropriate solvers are different:

– lot sizing −→ mixed integer programming (MIP)

– scheduling −→ constraint programming

• metaheuristics: provide a unified framework

• this work: focus on the integration

1

Motivation
• Practical problem:

– large industry

– stable demand

– production site where raw materials are transformed into end products.

• Currently:

– scheduling operations come from customer orders

– scheduling based on feasibility: no notion of cost involved

– demand is stable −→ why not think about lot sizes?

• Aim:

– formalise the problem

– lot sizing + scheduling −→ scheduling operations derived from good/optimal lot sizes

– implement a prototype

– check feasibility of the approach with nearly-real data

• Planning:

– Short term (scheduling): monthly basis

– Medium term (lot sizing): yearly basis

2

Background

Previous work in this area: LISCOS European project

• Exact approaches

• MIP for lot sizing

• Constraint programming for scheduling

• Both are commercial solvers

• Cost −→ not appropriate for prototyping

−→ metaheuristics

3

Lot sizing

Machine MachineMachine
1 2 3

Machine MachineMachine
1 2 3

t=1

t=2

. . .

Demand
Lot

Considering all the orders, for the whole of

the planning horizon, decide:

• quantity of each lot to be produced

• when to produce each lot

• (not concerned with order of production in

the machines)

4

Scheduling

Machine MachineMachine
1 2 3

Operations
For each operation of a given period of the

lot sizing problem:

• assign it to a machine

• assign it an order in the operations of that

machine

• detail: machines can operate in several

modes:

– full capacity −→ higher cost

– reduced capacity −→ lower cost

5

Time horizons

• are different for lot sizing and for scheduling

• horizon for scheduling ↔ one period of lot sizing model

• usually: scheduling only for the first period of lot sizing

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

scheduling

lot sizing

6

Main solution procedure

Solve lot
sizing prob scheduling

Prepare

problem

Start

Stop

problem
scheduling

SolveAdd constraint
cutting current

solution

Feasible?
N Y

7

Lot sizing model

• Costs:

– setup (fixed) costs

– variable production costs

– inventory

– backlog

• Decision varibles:

– manufacture or not of a product in each period: setup, binary variable ypmt

∗ ypmt = 1 if product p is manufactured in machine m during period t

∗ ypmt = 0 otherwise

– amount produced: continuous variable xpmt

∗ corresponding to ypmt.

∗ xpmt > 0 ⇒ ypmt = 1

– inventory hpt and backlog gpt

8

Objective

setup costs: F =
P

p∈P

P

m∈M

P

t∈T fpmt ypmt

• fpmt is the cost of setting up machine m on period t for producing p

variable costs: V =
P

p∈P

P

m∈M

P

t∈T vpmt xpmt

• vpmt is the variable cost of production of p on machine m, period t

inventory costs: I =
P

p∈P

P

t∈T ipt hpt

• hpt is the amount of product p that is kept in inventory at the end of period t

• ipt is the unit inventory cost for product p on period t

backlog costs: B =
P

p∈P

P

t∈T bpt gpt

• gpt is the amount of product p that failed to meet demand at the end of period t

• bpt is the unit backlog cost for product p on period t.

objective: minimise z = F + V + I + B

9

Constraints:
flow conservation:

hp,t−1 − gp,t−1 +
X

m∈Mp

xpmt = Dpt + hpt − gpt ∀ p ∈ P, ∀ t ∈ T .

hp0, hpT : initial and final inventory

gp0, gpT : initial and final backlog

time availability on each period:

X

p∈P:m∈Mp

„

xpmt

γpm

+ τpmt ypmt

«

≤ Amt ∀ m ∈ M, ∀ t ∈ T .

γpm is the total capacity of production of product p on machine m per time unit

τpmt is the setup time required if there is production of p on machine m during period t

Amt is the number of time units available for production on machine m during period t.

setup constraints:

xpmt ≤ γpm Amt ypmt

10

minimise z = F + V + I + B

subject to : F =
X

p∈P

X

m∈M

X

t∈T

fpmt ypmt

V =
X

p∈P

X

m∈M

X

t∈T

vpmt xpmt

I =
X

p∈P

X

t∈T

ipt hpt

B =
X

p∈P

X

t∈T

bpt gpt

hp,t−1 − gp,t−1 +
X

m∈Mp

xpmt = Dpt + hpt − gpt, ∀ p ∈ P, ∀ t ∈ T

X

p∈P:m∈Mp

„

xpmt

γpm

+ τpmt ypmt

«

≤ Amt, ∀ m ∈ M, ∀ t ∈ T

xpmt ≤ γpm Amt ypmt ∀ p ∈ P, ∀ m ∈ Mp, ∀ t ∈ T

F, V, I, B ∈ IR+

hpt, gpt ∈ IR+, ∀ p ∈ P, ∀ t ∈ T

xpmt ∈ IR+, ypmt ∈ {0, 1}, ∀ p ∈ P, ∀ m ∈ M, ∀ t ∈ T 11

Construction: relax-and-fix-one-product

• construction of a solution: based on partial relaxations of the initial problem

• variant of the classic relax-and-fix heuristic

12

Relax-and-fix

t=1
t=2

. . .

t=T

• each period is treated independently

• relax all the variables except those of period 1:

– keep ypm1 integer

– relax integrity for all other ypmt

• solve this MIP, determining heuristic values

for ȳpm1

13

Relax-and-fix

t=1
t=2

. . .

t=T

• each period is treated independently

• relax all the variables except those of period 1:

– keep ypm1 integer

– relax integrity for all other ypmt

• solve this MIP, determining heuristic values

for ȳpm1

• move to the second period:

– variables of the first period are fixed at

ypm1 = ȳpm1

– variables ypm2 are integer

– and all the other ypmt relaxed

• this determines the heuristic value for ypm2

14

Relax-and-fix

t=1
t=2

. . .

t=T

• each period is treated independently

• relax all the variables except those of period 1:

– keep ypm1 integer

– relax integrity for all other ypmt

• solve this MIP, determining heuristic values

for ȳpm1

• move to the second period:

– variables of the first period are fixed at

ypm1 = ȳpm1

– variables ypm2 are integer

– and all the other ypmt relaxed

• this determines the heuristic value for ypm2

• these steps are repeated, until all the y

variables are fixed

15

Relax-and-fix

t=1
t=2

. . .

t=T

• each period is treated independently

• relax all the variables except those of period 1:

– keep ypm1 integer

– relax integrity for all other ypmt

• solve this MIP, determining heuristic values

for ȳpm1

• move to the second period:

– variables of the first period are fixed at

ypm1 = ȳpm1

– variables ypm2 are integer

– and all the other ypmt relaxed

• this determines the heuristic value for ypm2

• these steps are repeated, until all the y

variables are fixed

16

Relax-and-fix heuristic.

• reported to provide very good solutions for many lot sizing problems

• however, for large instances the exact MIP solution of even a single period can be too time

consuming

• we propose a variant were each MIP determines only the variables of one period that concern

a single product → relax-and-fix-one-product

17

Relax-and-fix-one-product variant.

t=1
t=2

. . .

t=T

RelaxAndFixOneProduct()

(1) relax all ypmt as continuous variables

(2) for t = 1 to T

(3) foreach p ∈ P

(4) foreach m ∈ Mp

(5) set ypmt as integer

(6) solve MIP→ ȳpmt, ∀m ∈ Mp

(7) foreach m ∈ Mp

(8) fix ypmt := ȳpmt

(9) return ȳ

18

Relax-and-fix-one-product variant.

t=1
t=2

. . .

t=T

RelaxAndFixOneProduct()

(1) relax all ypmt as continuous variables

(2) for t = 1 to T

(3) foreach p ∈ P

(4) foreach m ∈ Mp

(5) set ypmt as integer

(6) solve MIP→ ȳpmt, ∀m ∈ Mp

(7) foreach m ∈ Mp

(8) fix ypmt := ȳpmt

(9) return ȳ

19

Relax-and-fix-one-product variant.

t=1
t=2

. . .

t=T

RelaxAndFixOneProduct()

(1) relax all ypmt as continuous variables

(2) for t = 1 to T

(3) foreach p ∈ P

(4) foreach m ∈ Mp

(5) set ypmt as integer

(6) solve MIP→ ȳpmt, ∀m ∈ Mp

(7) foreach m ∈ Mp

(8) fix ypmt := ȳpmt

(9) return ȳ

20

Relax-and-fix-one-product variant.

t=1
t=2

. . .

t=T

RelaxAndFixOneProduct()

(1) relax all ypmt as continuous variables

(2) for t = 1 to T

(3) foreach p ∈ P

(4) foreach m ∈ Mp

(5) set ypmt as integer

(6) solve MIP→ ȳpmt, ∀m ∈ Mp

(7) foreach m ∈ Mp

(8) fix ypmt := ȳpmt

(9) return ȳ

21

Relax-and-fix-one-product variant.

t=1
t=2

. . .

t=T

RelaxAndFixOneProduct()

(1) relax all ypmt as continuous variables

(2) for t = 1 to T

(3) foreach p ∈ P

(4) foreach m ∈ Mp

(5) set ypmt as integer

(6) solve MIP→ ȳpmt, ∀m ∈ Mp

(7) foreach m ∈ Mp

(8) fix ypmt := ȳpmt

(9) return ȳ

22

Relax-and-fix-one-product variant.

t=1
t=2

. . .

t=T

RelaxAndFixOneProduct()

(1) relax all ypmt as continuous variables

(2) for t = 1 to T

(3) foreach p ∈ P

(4) foreach m ∈ Mp

(5) set ypmt as integer

(6) solve MIP→ ȳpmt, ∀m ∈ Mp

(7) foreach m ∈ Mp

(8) fix ypmt := ȳpmt

(9) return ȳ

23

Relax-and-fix-one-product variant.

t=1
t=2

. . .

t=T

RelaxAndFixOneProduct()

(1) relax all ypmt as continuous variables

(2) for t = 1 to T

(3) foreach p ∈ P

(4) foreach m ∈ Mp

(5) set ypmt as integer

(6) solve MIP→ ȳpmt, ∀m ∈ Mp

(7) foreach m ∈ Mp

(8) fix ypmt := ȳpmt

(9) return ȳ

Additional advantage: if repeated, can

produce different solutions

−→ repeat it a number of times, retain

the best found solution

24

Scheduling: solution representation

There are two decisions that have to be taken for specifying a scheduling solution:

• Assigning a machine to each operation

• Establish an order for the operations inside each machine

25

Assigning a machine to each operation

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

26

Operation order for each machine

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

27

Solution evaluation (computing makespan and cost)

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

• Start scheduling operations which do not have

free (unscheduled) predecessors

28

Solution evaluation

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

2

10
2

12

• Start scheduling operations which do not have

free (unscheduled) predecessors

• Fix their earliest start time and earliest finish

time

29

Solution evaluation

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

2

10
2

12

• Start scheduling operations which do not have

free (unscheduled) predecessors

• Fix their earliest start time and earliest finish

time

• Check operations which can now be scheduled

30

Solution evaluation

2
12

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

10
2 2

10

3

10

5

15
25

27
17

• Start scheduling operations which do not have

free (unscheduled) predecessors

• Fix their earliest start time and earliest finish

time

• Check operations which can now be scheduled

• Fix their start and finish times

• . . .

31

Solution evaluation

2
12

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

10
2 2

10

3

10

5

15
25

27
17

• Start scheduling operations which do not have

free (unscheduled) predecessors

• Fix their earliest start time and earliest finish

time

• Check operations which can now be scheduled

• Fix their start and finish times

• . . .

• changeover times/costs

• transfer times/costs

• fixed/variable productions times/costs

32

Random solution construction

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

• Check all operations that can be scheduled

33

Random solution construction

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

• Check all operations that can be scheduled

• Randomly select one of them (operation 1)

• Randomly select one of the compatible

machines (machine 1)

• Fix this operation

34

Random solution construction

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

• (operation 1 is fixed on machine 1)

• Check all operations that can be scheduled

(operations 2, 3, 4)

• Randomly select one of them (operation 2)

• Randomly select one of the compatible

machines (machine 2)

• Fix this operation

35

Random solution construction

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

• (operation 1 is fixed on machine 1)

• (operation 2 is fixed on machine 2)

• Check all operations that can be scheduled

(opertions 3, 4)

• Randomly select one of them (operation 4)

• Randomly select one of the compatible

machines (machine 1)

• Fix this operation

36

Random solution construction

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

• (operation 1 is fixed on machine 1)

• (operation 2 is fixed on machine 2)

• (operation 4 is fixed on machine 1)

• Check all operations that can be scheduled

(opertions 3, 5)

• Randomly select one of them . . .

• Randomly select one of the compatible

machines . . .

• . . .

• Until all operations are scheduled

37

Random solution construction

• Produces a random, but feasible solution (except for violation of maximal makespan)

• Very easy to implement

• Can produce many different solutions

• If repeated many times: might obtain a good solution

38

Greedy construction

M2M1
14 17

M2M1
15 19

M2M1
12 14

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

• Check all operations that can be scheduled

• Compute the current makespan when they

are assigned to each of the possible machines

39

Greedy construction

M2M1
14 17

M2M1
15 19

M2M1
12 14

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

• Check all operations that can be scheduled

• Compute the current makespan when they

are assigned to each of the possible machines

• Select the assignment which induces the

smallest makespan

• Fix this operation

40

Greedy construction

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

M2M1

M2M1
19

M2M1
17

12

35 34

38

36

• Check all operations that can be scheduled

• Compute the current makespan when they

are assigned to each of the possible machines

• Select the assignment which induces the

smallest makespan

• Fix this operation

41

Greedy construction

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

M2M1

M2M1
19

M2M1
17

12

35 34

38

36

• Check all operations that can be scheduled

• Compute the current makespan when they

are assigned to each of the possible machines

• Select the assignment which induces the

smallest makespan

• Fix this operation

• . . .

• Continue this way until fixing all the

operations

42

Semi-greedy construction

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

M2M1

M2M1
19

M2M1
17

12

35 34

38

36

• As in the greedy construction, we check all

the possibilities for each operation the can be

scheduled

• Compute the current makespan for each of

these possibilities

43

Semi-greedy construction

1

3

4

2

5

8

6

7

Machine MachineMachine
1 2 3

M2M1

M2M1
19

M2M1
17

12

35 34

38

36

• As in the greedy construction, we check all

the possibilities for each operation the can be

scheduled

• Compute the current makespan for each of

these possibilities

• Then, select just the possibilities that satisfy

some criterion

• Create a Restricted Candidate List (RCL)

• Randomly select an (operation, machine) pair

from the RCL

• Fix that operation on that machine

• . . .

• Continue, until fixing all the operations

44

An algorithm for repeated construction

IteratedSemiGreedy(N ,t̄)

(1) t∗ = ∞

(2) c∗ = ∞

(3) for n = 1 to N

(4) x = SemiGreedyConstruct()

(5) t = Makespan(x)

(6) c = Cost(x)

(7) if (t < t̄ and c < c∗) or (t < t∗ and t∗ > t̄)

(8) x∗ = x; t∗ = t; c∗ = c

(9) return x∗

45

Main solution procedure (integration)

Solve lot
sizing prob scheduling

Prepare

problem

Start

Stop

problem
scheduling

SolveAdd constraint
cutting current

solution

Feasible?
N Y

46

“No good” cuts

Let

• y ∈ {0, 1} be a partial MIP solution

• S = {r : yr = 1} represent an assignment of tasks to machines

Then, if scheduling cannot find a feasible solution, add cut:

X

r∈S

yr ≤ |S| − 1

47

Cuts for capacity adjustment

Let

• xpmt be the production of item p on period t, machine k

• x̄pmt last MIP solution for these variables

• Imt the heuristic estimate of machine waiting times

If we cannot find a feasible schedule of the tasks on period t, then

• for the set of machines M∗ which did not respect the allowed makespan

• add cut:
X

p∈Pm

xpmt ≤
X

p∈Pm

x̄pmt − Imt ∀m ∈ M
∗

48

Main solution procedure

Solve lot
sizing prob scheduling

Prepare

problem

Start

Stop

problem
scheduling

SolveAdd constraint
cutting current

solution

Feasible?
N Y

49

Conclusion

• Motivation: industrial application on production planning

• Lot sizing and scheduling: exact solution difficult for both problems

• Integrated model: even more difficult

• Integration of the models has in itself a heuristic component

• Proposed metaheuristics: there is potential for improvement, but

• The method quickly provides implementable solutions

• Results are sufficient for the current practical requirements

50

