Hybrid tabu search for lot sizing problems

Joao Pedro Pedroso
Universidade do Porto
jpp@ncc.up.pt
and
Mikio Kubo
Tokyo University of Marine Science and Technology
kubo@e.kaiyodai.ac. jp

HM2005, Barcelona

R
Demand

—

4 N [

1

- .

Machine MOC#T?/
2
J

&

3

~

Machine

v

4 N

1

- .

Machine | | Machine

N

2

v

&

3

~

Machine

v

=1

t=2

Lot sizing

Considering all the orders, for the whole of
the planning horizon, decide:

e quantity of each lot to be produced
e when to produce each lot

e (not concerned with order of production in
the machines)

Ex: for a single product:

period

demand

1

SOk 0N

100
100
100
100
100
100

How should it be produced?

period production

period production

Lot sizing problems

setup variables
production variables
Inventory

backlog

period production

1

SOk N

100
100
100
100
100
100

1 600
2 0
3 0
4 0
5 0
6 0

1 0
2 0
3 0
4 0
5 0
6 600

The lot sizing model

big bucket problem: more than one setup allowed per period, as long as machine capacities
respected
costs: (values for each of them can vary from period to period)
® setup costs
e variable production costs
e inventory and backlog costs
decision variables:
e manufacture or not of a product in each period: setup, binary variable ¥y,
— Ypmt = 1 if product p is manufactured in machine m during period ¢
— Ypmt = 0 otherwise
e amount produced: continuous variable x;,,;
— corresponding to Ypm.
- xpmt>0$ypmt:1
e inventory hy: and backlog g,

parameters:
T': number of periods, 7 = {1,...,T}
P: set of products
M set of machines
MP: subset of machines compatible with the production of p.

Objective

setup costs: F'= 3" 5> D icr fomt Ypmt
® fpm: is the cost of setting up machine m on period t for producing p

variable costs: V = Zpep Y o meM 2oteT Vpmt Tpmt
® U,m: is the variable cost of production of p on machine m, period ¢

inventory costs: I = > 5> 7 ipt hpt
® h, is the amount of product p that is kept in inventory at the end of period ¢
® 7, Is the unit inventory cost for product p on period ¢

backlog costs: B = > 5> c7 bpt gpt
® g, is the amount of product p that failed to meet demand at the end of period ¢
e b, is the unit backlog cost for product p on period ¢.

objective: minimisez = F 4+ V + 1+ B

Constraints:

setup on producing machines:
Lpmt Sf)/pm Amtypmt \VIPEP, Vm € Mpa vteT

Tpmt amount produced
Ypmt corresponding setup

time availability on each period:

xm
> b et < Ami YmEM, VteT.

pEP:meMP Ypm

Ypm is the total capacity of production of product p on machine m per time unit
Tpmt 15 the setup time required if there is production of p on machine m during period ¢
A, is the number of time units available for production on machine m during period t.

flow conservation:

hp,t—l — Jp,t—1 + Z Lpmt — Dpt + hpt — gpt v p < 737 vteT.
meMP

hpo, hpr: initial and final inventory
gpo, gpr: initial and final backlog

minimise

subject to :

z=F+V+I1+B

F = y: y: y:fpmt Ypmt

pEP meM teT

V = y: y: y:’vpmt Lpmt

pEP meM teT

I:ZZ’I:pt hpt

peEP teT
B=3"3bun
peEP teT
hpi—1— Gpi-1+ D Tpmi = Dyt +hypt —gp, VPEP, VteT

meMP

X m
Z pt+Tpmtypmt < Ani, YmeM,VteT
pEP:meMP Ypm
Tpmt < Ypm Amt Ypmt VD EP, Vme MP, VteT

F.V,I,BeR"

hpt7 gpt€R+a vaP,VtET

Tpmt € RT, ypme € {0,1}, VpEP,YmMmEM,VteT 8
(1)

Construction: relax-and-fix-one-product

e construction of a solution: based on partial relaxations of the initial problem

e variant of the classic relax-and-fix heuristic

Relax-and-fix

e each period is treated independently

T— -l e relax all the variables except those of period 1:
— keep ypm1 integer
.._2 — relax integrity for all other ypm.
- e solve this MIP, determining heuristic values
for Ypma1

10

Relax-and-fix

e cach period is treated independently
— e relax all the variables except those of period 1:
— keep ypm1 integer
1 — relax integrity for all other ypm.

e solve this MIP, determining heuristic values
for Ypm1

e move to the second period:
— variables of the first period are fixed at

Ypml = gpml
— variables y,,2 are integer
-I-_T — and all the other y,,; relaxed

e this determines the heuristic value for ypm2

11

Relax-and-fix

e cach period is treated independently
'|'= -l e relax all the variables except those of period 1:
— keep ypm1 integer
I 2 — relax integrity for all other ypm.
- e solve this MIP, determining heuristic values
for gpml
e move to the second period:
o — variables of the first period are fixed at
Ypm1l — gpml
— variables y,,2 are integer
_|__-|- — and all the other y,,+ relaxed

e this determines the heuristic value for ypm2

e these steps are repeated, until all the y
variables are fixed

12

Relax-and-fix

e cach period is treated independently
'|'= -l e relax all the variables except those of period 1:
— keep ypm1 integer
I 2 — relax integrity for all other ypm.
- e solve this MIP, determining heuristic values
for gpml
e move to the second period:
o — variables of the first period are fixed at
Ypm1l — gpml
— variables y,,2 are integer
_|__-|- — and all the other y,,+ relaxed

e this determines the heuristic value for ypm2

e these steps are repeated, until all the y
variables are fixed

13

Relax-and-fix heuristic.

reported to provide very good solutions for many lot sizing problems
however, for large instances the exact MIP solution of even a single period can be too time

consuming
we propose a variant were each MIP determines only the variables of one period that concern

a single product — relax-and-fix-one-product

14

Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()

(1) relax all ypm: as continuous variables
(2) fort =1to T

(3) foreachp € P

(4) foreach m € M?

(5) set Ypme as integer

(

(

(

(

6) solve MIP— 4pmt, Vm € MP
7) foreach m € M?
3

) fiX Ypmt 1= Ypmt
9) return y

15

Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()

(1) relax all ypm: as continuous variables
(2) fort =1to T

(3) foreachp € P

(4) foreach m € M?

(5) set Ypme as integer

(

(

(

(

6) solve MIP— 4pmt, Vm € MP
7) foreach m € M?
38

) fiX Ypmt 1= Ypmt
9) return y

16

Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()

T—= -| (1) relax all ypm: as continuous variables
(2) fort =1to T
=2 (3) foreachp € P
(4) foreach m € M?
(5) set Ypme as integer
(6) solve MIP— §pmt, VM € MP
oo (7) foreach m € M?
(8) fix Ypmt ‘= Ypmt
(9) return y

17

Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()

T—= -| (1) relax all ypm: as continuous variables
(2) fort =1to T
--=2 (3) foreachp € P
(4) foreach m € M?
(5) set Ypme as integer
(6) solve MIP— §pmt, VM € MP
oo (7) foreach m € M?
(8) fix Ypmt ‘= Ypmt
(9) return y

18

Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()

T—= -| (1) relax all ypm: as continuous variables
(2) fort =1to T
--=2 (3) foreachp € P
(4) foreach m € M?
(5) set Ypme as integer
(6) solve MIP— §pmt, VM € MP
oo (7) foreach m € M?
(8) fix Ypmt ‘= Ypmt
(9) return y

19

Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()

T—= -| (1) relax all ypm: as continuous variables
(2) fort =1to T
--=2 (3) foreachp € P
(4) foreach m € M?
(5) set Ypme as integer
(6) solve MIP— §pmt, VM € MP
oo (7) foreach m € M?
(8) fix Ypmt ‘= Ypmt
(9) return y

20

Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()

(1) relax all ypm: as continuous variables
(2) fort =1to T

(3) foreach p € P

(4) foreach m € M?P

(5) set Ypme as integer

(6) solve MIP— §pmt, VM € MP
(7) foreach m € M?

(8) fiX Ypmt 1= Ypme

(9) return y

Additional advantage: if repeated, can
produce different solutions

—— repeat it a number of times, retain
the best found solution

21

Solution reconstruction

e relax-and-fix-one-product construction mechanism can be used for completing a solution that
has been partially destructed

e check if incoming Y+ variables are initialized or not;
— if they are initialized, they should be fixed in the MIP at their current value
— otherwise, they are treated as in the previous algorithm:
x* made integer if they belong to the period and product currently being dealt
* relaxed otherwise

22

RECONSTRUCT(Y)
(1) fort=1toT

(2) foreach p € P

(3) foreach m ¢ MP

(4) if Ypmt is not initialized
(5) relax Ypmt

(6) else

(7) fix Ypmt ‘= Ypmt

(8) fort=1toT

(9) foreach p € P

(10) U:=1{}

(11) foreach m € MP

(12) if Ypmt is not initialized
(13) set Ypmt as integer
(14) U = UU {(p,m, 1)}
(15) solve lot sizing MIP

(16) foreach (p, m,t) € U
(17) fiX Ypmt := Ypmt

(18) return g

23

RECONSTRUCT(Y)
(1) fort=1toT

(2) foreach p € P

(3) foreach m ¢ MP

(4) if Ypmt is not initialized
(5) relax Ypmt

(6) else

(7) fix Ypmt ‘= Ypmt

(8) fort=1toT

(9) foreach p € P

(10) U:=1{}

(11) foreach m € MP

(12) if Ypmt is not initialized
(13) set Ypmt as integer
(14) U = UU {(p,m, 1)}
(15) solve lot sizing MIP

(16) foreach (p, m,t) € U
(17) fiX Ypmt := Ypmt

(18) return g

24

RECONSTRUCT(Y)
(1) fort=1toT

(2) foreach p € P

(3) foreach m ¢ MP

(4) if Ypmt is not initialized
(5) relax Ypmt

(6) else

(7) fix Ypmt ‘= Ypmt

(8) fort=1toT

(9) foreach p € P

(10) U:=1{}

(11) foreach m € MP

(12) if Ypmt is not initialized
(13) set Ypmt as integer
(14) U = UU {(p,m, 1)}
(15) solve lot sizing MIP

(16) foreach (p, m,t) € U
(17) fiX Ypmt := Ypmt

(18) return g

25

RECONSTRUCT(Y)
(1) fort=1toT

(2) foreach p € P

(3) foreach m ¢ MP

(4) if Ypmt is not initialized
(5) relax Ypmt

(6) else

(7) fix Ypmt ‘= Ypmt

(8) fort=1toT

(9) foreach p € P

(10) U:=1{}

(11) foreach m € MP

(12) if Ypmt is not initialized
(13) set Ypmt as integer
(14) U = UU {(p,m, 1)}
(15) solve lot sizing MIP

(16) foreach (p, m,t) € U
(17) fiX Ypmt := Ypmt

(18) return g

26

RECONSTRUCT(Y)
(1) fort=1toT

(2) foreach p € P

(3) foreach m ¢ MP

(4) if Ypmt is not initialized
(5) relax Ypmt

(6) else

(7) fix Ypmt ‘= Ypmt

(8) fort=1toT

(9) foreach p € P

(10) U:=1{}

(11) foreach m € MP

(12) if Ypmt is not initialized
(13) set Ypmt as integer
(14) U = UU {(p,m, 1)}
(15) solve lot sizing MIP

(16) foreach (p, m,t) € U
(17) fiX Ypmt := Ypmt

(18) return g

27

A hybrid tabu search approach

e two-fold hybrid metaheuristic for lot sizing:
— relax-and-fix-one-product is used to initialize a solution, or complete partial solutions
— tabu search is responsible for creating diverse points for restarting relax-and-fix.
— before each restart:
* the current tabu search solution is partially destructed
* Its reconstruction is made by means of relax-and-fix-one-product

28

Solution representation

e For tabu search:

— variables: y,m,: variables
— all continuous variables can be determined in function of these

e Thus: a tabu search solution is a matrix of ¢, binary variables.

29

minimise

subject to :

z=F+V+I1+B

F = y: y: y:fpmt Ypmt

pEP meM teT

V = y: y: y:’vpmt Lpmt

pEP meM teT

I:ZZ’I:pt hpt

peEP teT
B=3"3bun
peEP teT
hpi—1— Gpi-1+ D Tpmi = Dyt +hypt —gp, VPEP, VteT

meMP

X m
Z pt+Tpmtypmt < Ani, YmeM,VteT
pEP:meMP Ypm
Tpmt < Ypm Amt Ypmt VD EP, Vme MP, VteT

F.V,I,BeR"

hot, gt €EIRT, VpeP, VteT

Tpmt € RT, ypme € {0,1}, VpEP,YmMmEM,VteT 30
(2)

Solution evaluation

can be made through the solution of the lot sizing model

with all the binary variables fixed at values ¥pm

as all the binary variables are fixed, this problem is a linear program (LP)

z at the optimal solution of this LP provides the evaluation of the quality of ¥+

values of all the other variables x, h and g corresponding to 4,m+ are also determined through
this LP solution

31

Hybrid tabu search

TABUSEARCH(tlim, seed, instance)

(1) store instance information 7, P, M, f,g, ...
(2) initialize random number generator with seed
(3) ¥ := RELAXANDFIXONEPRODUCT()

4 v =9

(5) n:=|T|x|[P]|

6) ©:=((-n,...,—n),...,(—n,...,—n))
(7) 1 :=1

(8) while CPUTIME() < tlim

(9) g := TaBUMOVE(%, 7™, i, ©)

(10) if 7 is better than 7™

(11) g =9

(12) 1:=1+ 1

(13) return 7™

based only on short term memory

parameter: t/im, limit of CPU to be used in
the search

seed for initializing the random number
generator

name of the instance to be solved.

32

[TILT]

EWGcmne1

Machine 3

(W]

Ewgcmne2

|

Neighborhood

® consists of solutions where:

manufacturing a product in a given period
and machine is stopped

its manufacture is attempted in different
machines, on the same period

33

Neighborhood

® consists of solutions where:
Machine 1 Machine 2 Machine 3
| t=2 — manufacturing a product in a given period

T .
EREEE Eq\ [] and machine is stopped

— its manufacture is attempted in different

/ machines, on the same period

N
ﬂMﬁmTef J ﬂMT@fﬂTef J EMTCFTMI} =2

34

Neighborhood

® consists of solutions where:
Machine 1 Machine 2 Machine 3
| t=2 — manufacturing a product in a given period

nnin)|y nun|jeEns ring
i and machine is stopped
m — its manufacture is attempted in different
7 machines, on the same period
Machine 1 I\/Iog%ine 2 Machine 3
(TTTO|[CCIT O (T | ™

—— this is a composed neighborhood, where one

/
Mo%hine] Machine 2 | |Machine 3 or two move_s are allowe_d')
(W T ITTITOIIIIm| =2 —— otherwise: for n integer (setup) variables,
n? neighbors to check

35

Tabu moves

® neighbor is returned immediately if:
— it improves the best found solution
— it is not tabu and it improves the input solution

e if no improving move could be found in the whole neighborhood:
we force a diversification:

— solution is partially destructed
— best found move is then applied and made tabu
— solution is reconstructed

—— hybridization is on the destruction/reconstruction steps

36

Solution destruction

e start with a complete solution (all integer
T— -| variables are fixed)

e randomly select a non-tabu variable

37

Solution destruction

e start with a complete solution (all integer
T— -| variables are fixed)

e randomly select a non-tabu variable
=2 o un-initialize it

38

Solution destruction

e start with a complete solution (all integer

T— -| variables are fixed)
e randomly select a non-tabu variable
=2 ® un-initialize it
Co —— continue until having destructed a% of

the variables

-|-=T — « is a random uniform in [0, 1], drawn
at each iteration

39

Tabu information

Tabu information: kept in the matrix ©
©,m holds the iteration at which a variable y,,,+ has been updated

tabu tenure: is a random value, d

e drawn in each iteration between 1 and the number of integer variables

e if the current iteration is %, then a move involving product p and machine m:
— istabuif 2 — ©,, < d
— otherwise (i.e., if ¢ — ©,,,, > d) it is not tabu

e making it a random value simplifies the parameterization

40

Move during each tabu search iteration.

TABUMOVE(7, 5™, 1, ©)

(1) 7 =7

(2) fort=1toT

(3) foreach p € P

(4) S:={meMP:y,, =1}

(5) U:={me MP: gy, =0}

(6) d:= Z[1, |P| x [M] x|T]]

(7) foreach m € S

(8) fix Ypme := 0

(9) if § is better than §* or (i — ©pm > d and ¥ is better than 7')
(10) return g

(11) if i — ©pm > d and (F€ is not initialized or § is better than §©)
(12) g© =g, my = (p,m, 1)

(13) foreach m’ € U

(14) fix gpm,t =1

(15) if 7 is better than §™ or (i — ©pm > d and § is better than g’)
(16) return g

(17) if i — Opm > d and (€ is not initialized or ¥ is better than §€)
(18) 7€ =g, my = (p,m,t), mg := (p,m’, 1)

(19) restore gpm/t =0

(20) restore Ypm¢ = 1

NN DN NN
Gl B~ wWw N

AN AN AN AN AN NSNS /S
(=)}
N N N N N N N N N N

a =X
un-initialize % of the §€ variables
if §€ is not initialized
select a random index (p, m, t)
~C ._ = =C R = .
Y=Y Ypmt =1~ Tpmt Opm :
else
(p,m,t) :=m71, Opm =1
if mo is initialized
(p,m,t) ;= mg, Opm =1
g :=RECONSTRUCT(F°)
return y

Computational results

algorithms were tested on a series of benchmark instances

instances derived from a real-world problem

— 12 products

— 12 periods

— 15 machines

— random demand (average: true estimated demand)

smaller instances:

— reduce the number of periods
— randomly select a subset of products
— machines: those compatible with the selected products

43

Instances — practical benchmarks

Name | Number of | Number of | Number of | Number of | Number of
periods products integers variables constraints
inst-02 2 2 20 56 45
inst-05 5 5 135 334 235
inst-07 7 7 210 536 369
inst-09) 9 306 796 554
inst-12 12 12 492 1300 8b7

44

Results — practical benchmarks

Name Relax-and-fix Hybrid tabu search sol. branch-and-

time (s) solution worst average best | bound best sol.
inst-02 <1 13.897 13.897 13.897 13.897 13.897"
inst-05 1.8 50.536 48.878 48.878 48.878 43.878
inst-07 2.9 131.095| 126.030 126.265 126.595 127.604
inst-09 5.6 213.981| 207.441 208.206 208.841 235.125
inst-12 13.1 277.451| 274.283 274.397 274.626 431.660

Hybrid tabu search and branch-and-bound: 3600 seconds CPU time

45

Results — LOTSIZELIB benchmarks

Name | Relax-and-fix (average) | Hybrid tabu search sol. branch-and-| optimal

time (s) solution worst average best| bound best sol.| solution
pp08a <1 7638.0 7380 7374 7360 7350 7350
rgna <1 82.2 82.2 82.2 82.2 82.2 82.2
setlch 13.4 56024.3 | 55243.5 55089.6 54950 60517.7 54537
tr6-15 1.3 40767.6| 38357 38238 38054 39388 37721
tr6-30 5.1 67057.0| 63422 63246.2 63132 63711 | 61746"
tr12-30 69.1 143014.0| 137371 136762.8 136299 1940337 | 130599"

Hybrid tabu search and branch-and-bound: 3600 seconds CPU time

Optimal solutions: as reported in LOTSIZELIB.

(* indicate best known solutions)

46

Hybrid metaheuristic

T

T

best solution
current solution -------

-
==
N
<--————"""
=
//
Z
Ne——
S
S ———
————
___-==
\
N
||||||||||| s
-
T o=
e
<o
=
S———
o TT
==

80 100 120 140 160 180
number of iterations

60

40

20

47

281

280
279
278
7
276
275

aneA aAnoalqo

274

Pure tabu search

llllllllll -
I
s 77
-Z==>
===
===
==ZC
==
e————————__—ZZ=z====
==
=
e
__=="
N
(bt
T _
—m————————
—====____
=
"
===
T Ttz
>~

I

I

I

- I
I

W

cC C
0.9
— =
55
[oNe]
" um
— 4
-0 C
Qo
o=
>

(&)

284

283
282
281
8
279

anfeA aAndalgo

277

350

300

250

200

150

100

50

48

number of iterations

Conclusion

main motivation for this work
— solve practical problem
— exploitation of relax-and-fix in a setup which enforced diversity
— tabu search mechanism was responsible for imposing changes on the solution
— after changes were made:
* a part of the solution (not involving the latest changes) was destructed
* relax-and-fix was used to rebuild it.
why hybridize:
— non-improving moves made by tabu search rapidly force the solution into rather poor regions
— reason: large number of moves required to change good solution into another good solution
— “moves” done by relax-and-fix whenever tabu search cannot find improving neighbor
— when improving neighbors are found, the destruction/reconstruction cycle were skipped
computational results show advantage of this strategy, as compared to:
— simple relax-and-fix-one-product heuristic
— time-limited branch-and-bound

49

