Hybrid tabu search for lot sizing problems

João Pedro Pedroso

Universidade do Porto jpp@ncc.up.pt

 and

Mikio Kubo

Tokyo University of Marine Science and Technology kubo@e.kaiyodai.ac.jp

HM2005, Barcelona

Lot sizing

. . .

Considering all the orders, for the whole of the planning horizon, decide:

- quantity of each lot to be produced
- when to produce each lot
- (not concerned with *order of production* in the machines)

Lot sizing problems

Ex: for a single product:

period	demand
1	100
2	100
3	100
4	100
5	100
6	100

How should it be produced?

	cotun	VARIAN	
	Secure	variau	ies
-	o o c a p	- an la b	

- production variables
- inventory
- backlog

period	production	period	production	period production		
1	100	1	600	1	0	
2	100	2	0	2	0	
3	100	3	0	3	0	
4	100	4	0	4	0	
5	100	5	0	5	0	
6	100	6	0	6	600	

The lot sizing model

big bucket problem: more than one setup allowed per period, as long as machine capacities respected

costs: (values for each of them can vary from period to period)

- setup costs
- variable production costs
- inventory and backlog costs

decision variables:

- manufacture or not of a product in each period: setup, binary variable y_{pmt}
 - $y_{pmt} = 1$ if product p is manufactured in machine m during period t
 - $y_{pmt} = 0$ otherwise
- amount produced: continuous variable x_{pmt}
 - corresponding to y_{pmt} .
 - $x_{pmt} > 0 \Rightarrow y_{pmt} = 1$
- inventory h_{pt} and backlog g_{pt}

parameters:

- T: number of periods, $\mathcal{T} = \{1, \ldots, T\}$
- $\mathcal{P}\text{:}\xspace$ set of products
- $\mathcal M {:} \ \text{set of machines}$

 \mathcal{M}^p : subset of machines compatible with the production of p.

Objective

setup costs: $F = \sum_{p \in \mathcal{P}} \sum_{m \in \mathcal{M}} \sum_{t \in \mathcal{T}} f_{pmt} y_{pmt}$

• f_{pmt} is the cost of setting up machine m on period t for producing p

variable costs: $V = \sum_{p \in \mathcal{P}} \sum_{m \in \mathcal{M}} \sum_{t \in \mathcal{T}} v_{pmt} x_{pmt}$

• v_{pmt} is the variable cost of production of p on machine m, period t

inventory costs: $I = \sum_{p \in \mathcal{P}} \sum_{t \in \mathcal{T}} i_{pt} h_{pt}$

- h_{pt} is the amount of product p that is kept in inventory at the end of period t
- i_{pt} is the unit inventory cost for product p on period t

backlog costs: $B = \sum_{p \in \mathcal{P}} \sum_{t \in \mathcal{T}} b_{pt} g_{pt}$

- g_{pt} is the amount of product p that failed to meet demand at the end of period t
- b_{pt} is the unit backlog cost for product p on period t.

objective: minimise z = F + V + I + B

Constraints:

setup on producing machines:

$$x_{pmt} \leq \gamma_{pm} A_{mt} y_{pmt} \quad \forall \ p \in \mathcal{P}, \ \forall \ m \in \mathcal{M}^p, \ \forall \ t \in \mathcal{T}$$

 x_{pmt} amount produced y_{pmt} corresponding setup time availability on each period:

$$\sum_{p \in \mathcal{P}: m \in \mathcal{M}^p} \quad \frac{x_{pmt}}{\gamma_{pm}} + \tau_{pmt} \; y_{pmt} \quad \leq A_{mt} \quad \forall \; m \in \mathcal{M}, \; \forall \; t \in \mathcal{T}.$$

 γ_{pm} is the total capacity of production of product p on machine m per time unit τ_{pmt} is the setup time required if there is production of p on machine m during period t. A_{mt} is the number of time units available for production on machine m during period t. flow conservation:

$$h_{p,t-1} - g_{p,t-1} + \sum_{m \in \mathcal{M}^p} x_{pmt} = D_{pt} + h_{pt} - g_{pt} \quad \forall p \in \mathcal{P}, \ \forall t \in \mathcal{T}.$$

 h_{p0} , h_{pT} : initial and final inventory g_{p0} , g_{pT} : initial and final backlog

$$\begin{array}{ll} \text{minimise} & z = F + V + I + B \\ \text{subject to}: & F = \sum_{p \in \mathcal{P}} \sum_{m \in \mathcal{M}} \sum_{t \in \mathcal{T}} f_{pmt} y_{pmt} \\ & V = \sum_{p \in \mathcal{P}} \sum_{m \in \mathcal{M}} \sum_{t \in \mathcal{T}} v_{pmt} x_{pmt} \\ & I = \sum_{p \in \mathcal{P}} \sum_{t \in \mathcal{T}} i_{pt} h_{pt} \\ & B = \sum_{p \in \mathcal{P}} \sum_{t \in \mathcal{T}} b_{pt} g_{pt} \\ & h_{p,t-1} - g_{p,t-1} + \sum_{m \in \mathcal{M}^p} x_{pmt} = D_{pt} + h_{pt} - g_{pt}, \quad \forall \ p \in \mathcal{P}, \ \forall \ t \in \mathcal{T} \\ & \sum_{p \in \mathcal{P}:m \in \mathcal{M}^p} \frac{x_{pmt}}{\gamma_{pm}} + \tau_{pmt} y_{pmt} \quad \leq A_{mt}, \quad \forall \ m \in \mathcal{M}, \ \forall \ t \in \mathcal{T} \\ & x_{pmt} \leq \gamma_{pm} A_{mt} y_{pmt} \quad \forall \ p \in \mathcal{P}, \ \forall \ m \in \mathcal{M}^p, \ \forall \ t \in \mathcal{T} \\ & F, V, I, B \in \mathbb{R}^+, \quad \forall \ p \in \mathcal{P}, \ \forall \ t \in \mathcal{T} \\ & x_{pmt} \in \mathbb{R}^+, \quad y_{pmt} \in \{0,1\}, \quad \forall \ p \in \mathcal{P}, \ \forall \ m \in \mathcal{M}, \ \forall \ t \in \mathcal{T} \end{array}$$

Construction: relax-and-fix-one-product

- construction of a solution: based on partial relaxations of the initial problem
- variant of the classic relax-and-fix heuristic

- each period is treated independently
- relax all the variables except those of period 1:
 - keep y_{pm1} integer
 - relax integrity for all other y_{pmt}
- solve this MIP, determining heuristic values for \bar{y}_{pm1}

- each period is treated independently
- relax all the variables except those of period 1:
 - keep y_{pm1} integer
 - relax integrity for all other y_{pmt}
- solve this MIP, determining heuristic values for \bar{y}_{pm1}
- move to the second period:
 - variables of the first period are fixed at $y_{pm1} = \bar{y}_{pm1}$
 - variables y_{pm2} are integer
 - and all the other y_{pmt} relaxed
- this determines the heuristic value for y_{pm2}

- each period is treated independently
- relax all the variables except those of period 1:
 - keep y_{pm1} integer
 - relax integrity for all other y_{pmt}
- solve this MIP, determining heuristic values for \bar{y}_{pm1}
- move to the second period:
 - variables of the first period are fixed at $y_{pm1} = \bar{y}_{pm1}$
 - variables y_{pm2} are integer
 - and all the other y_{pmt} relaxed
- ullet this determines the heuristic value for y_{pm2}
- \bullet these steps are repeated, until all the y variables are fixed

- each period is treated independently
- relax all the variables except those of period 1:
 - keep y_{pm1} integer
 - relax integrity for all other y_{pmt}
- solve this MIP, determining heuristic values for \bar{y}_{pm1}
- move to the second period:
 - variables of the first period are fixed at $y_{pm1}=ar{y}_{pm1}$
 - variables y_{pm2} are integer
 - and all the other y_{pmt} relaxed
- ullet this determines the heuristic value for y_{pm2}
- \bullet these steps are repeated, until all the y variables are fixed

Relax-and-fix heuristic.

- reported to provide very good solutions for many lot sizing problems
- however, for large instances the exact MIP solution of even a single period can be too time consuming
- we propose a variant were each MIP determines only the variables of one period *that concern* a single product → relax-and-fix-one-product

RELAXANDFIXONEPRODUCT()

- (1) relax all y_{pmt} as continuous variables
- (2) for t = 1 to T
- (3) foreach $p \in \mathcal{P}$
- (4) foreach $m \in \mathcal{M}^p$
- (5) set y_{pmt} as integer
- (6) solve MIP $\rightarrow \bar{y}_{pmt}, \forall m \in \mathcal{M}^p$
- (7) foreach $m \in \mathcal{M}^p$

(8) fix
$$y_{pmt} := \bar{y}_{pmt}$$

RELAXANDFIXONEPRODUCT()

- (1) relax all y_{pmt} as continuous variables
- (2) for t = 1 to T
- (3) foreach $p \in \mathcal{P}$
- (4) foreach $m \in \mathcal{M}^p$
- (5) set y_{pmt} as integer
- (6) solve MIP $\rightarrow \bar{y}_{pmt}, \forall m \in \mathcal{M}^p$
- (7) foreach $m \in \mathcal{M}^p$

(8) fix
$$y_{pmt} := \bar{y}_{pmt}$$

RELAXANDFIXONEPRODUCT()

- (1) relax all y_{pmt} as continuous variables
- (2) for t = 1 to T
- (3) foreach $p \in \mathcal{P}$
- (4) foreach $m \in \mathcal{M}^p$
- (5) set y_{pmt} as integer
- (6) solve MIP $\rightarrow \bar{y}_{pmt}, \forall m \in \mathcal{M}^p$
- (7) foreach $m \in \mathcal{M}^p$

(8) fix
$$y_{pmt} := \bar{y}_{pmt}$$

RELAXANDFIXONEPRODUCT()

- (1) relax all y_{pmt} as continuous variables
- (2) for t = 1 to T
- (3) foreach $p \in \mathcal{P}$
- (4) foreach $m \in \mathcal{M}^p$
- (5) set y_{pmt} as integer
- (6) solve MIP $\rightarrow \bar{y}_{pmt}, \forall m \in \mathcal{M}^p$
- (7) foreach $m \in \mathcal{M}^p$

(8) fix
$$y_{pmt} := \bar{y}_{pmt}$$

RELAXANDFIXONEPRODUCT()

- (1) relax all y_{pmt} as continuous variables
- (2) for t = 1 to T
- (3) foreach $p \in \mathcal{P}$
- (4) foreach $m \in \mathcal{M}^p$
- (5) set y_{pmt} as integer
- (6) solve MIP $\rightarrow \bar{y}_{pmt}, \forall m \in \mathcal{M}^p$
- (7) foreach $m \in \mathcal{M}^p$

(8) fix
$$y_{pmt} := \bar{y}_{pmt}$$

RELAXANDFIXONEPRODUCT()

- (1) relax all y_{pmt} as continuous variables
- (2) for t = 1 to T
- foreach $p \in \mathcal{P}$ (3)
- foreach $m \in \mathcal{M}^p$ (4)
- (5)set y_{pmt} as integer
- solve MIP $ightarrow ar{y}_{pmt}, orall m \in \mathcal{M}^p$ (6)
- foreach $m \in \mathcal{M}^p$ (7)

(8) fix
$$y_{pmt} := \bar{y}_{pmt}$$

RELAXANDFIXONEPRODUCT()

- (1) relax all y_{pmt} as continuous variables
- (2) for t = 1 to T
- (3) foreach $p \in \mathcal{P}$
- (4) foreach $m \in \mathcal{M}^p$
- (5) set y_{pmt} as integer
- (6) solve MIP $\rightarrow \bar{y}_{pmt}, \forall m \in \mathcal{M}^p$
- (7) foreach $m \in \mathcal{M}^p$

8) fix
$$y_{pmt} := ar{y}_{pmt}$$

(9) return \bar{y}

Additional advantage: if repeated, can produce different solutions \longrightarrow repeat it a number of times, retain the best found solution

Solution reconstruction

- relax-and-fix-one-product construction mechanism can be used for *completing a solution that has been partially destructed*
- check if incoming \bar{y}_{pmt} variables are initialized or not;
 - if they are initialized, they should be fixed in the MIP at their current value
 - otherwise, they are treated as in the previous algorithm:
 - * made integer if they belong to the period and product currently being dealt
 - * relaxed otherwise


```
Reconstruct(\bar{y})
      for t = 1 to T
(1)
          for
each p \in \mathcal{P}
(2)
             foreach m \in \mathcal{M}^p
(3)
                if \bar{y}_{pmt} is not initialized
(4)
(5)
                   relax y_{pmt}
(6)
                else
(7)
                   fix y_{pmt} := \bar{y}_{pmt}
       for t = 1 to T
(8)
(9)
          foreach p \in \mathcal{P}
            \mathcal{U} := \{\}
(10)
             foreach m \in \mathcal{M}^p
(11)
                if \bar{y}_{pmt} is not initialized
(12)
(13)
                   set y_{pmt} as integer
(14)
                   \mathcal{U} := \mathcal{U} \cup \{(p, m, t)\}
(15)
             solve lot sizing MIP
(16)
             foreach (p, m, t) \in \mathcal{U}
(17)
                fix y_{pmt} := \bar{y}_{pmt}
(18) return \bar{y}
```



```
Reconstruct(\bar{y})
      for t = 1 to T
(1)
          for
each p \in \mathcal{P}
(2)
             foreach m \in \mathcal{M}^p
(3)
                if \bar{y}_{pmt} is not initialized
(4)
(5)
                   relax y_{pmt}
(6)
                else
(7)
                   fix y_{pmt} := \bar{y}_{pmt}
       for t = 1 to T
(8)
(9)
          foreach p \in \mathcal{P}
            \mathcal{U} := \{\}
(10)
             foreach m \in \mathcal{M}^p
(11)
                if \bar{y}_{pmt} is not initialized
(12)
(13)
                   set y_{pmt} as integer
(14)
                   \mathcal{U} := \mathcal{U} \cup \{(p, m, t)\}
(15)
             solve lot sizing MIP
(16)
             foreach (p, m, t) \in \mathcal{U}
(17)
                fix y_{pmt} := \bar{y}_{pmt}
(18) return \bar{y}
```



```
Reconstruct(\bar{y})
      for t = 1 to T
(1)
          for
each p \in \mathcal{P}
(2)
             foreach m \in \mathcal{M}^p
(3)
                if \bar{y}_{pmt} is not initialized
(4)
(5)
                   relax y_{pmt}
(6)
                else
(7)
                   fix y_{pmt} := \bar{y}_{pmt}
       for t = 1 to T
(8)
(9)
          foreach p \in \mathcal{P}
(10)
            \mathcal{U} := \{\}
             foreach m \in \mathcal{M}^p
(11)
                if \bar{y}_{pmt} is not initialized
(12)
(13)
                   set y_{pmt} as integer
(14)
                   \mathcal{U} := \mathcal{U} \cup \{(p, m, t)\}
(15)
             solve lot sizing MIP
(16)
             foreach (p, m, t) \in \mathcal{U}
(17)
                fix y_{pmt} := \bar{y}_{pmt}
(18) return \bar{y}
```



```
Reconstruct(\bar{y})
      for t = 1 to T
(1)
          for
each p \in \mathcal{P}
(2)
             foreach m \in \mathcal{M}^p
(3)
                if \bar{y}_{pmt} is not initialized
(4)
(5)
                   relax y_{pmt}
(6)
                else
(7)
                   fix y_{pmt} := \bar{y}_{pmt}
       for t = 1 to T
(8)
(9)
          foreach p \in \mathcal{P}
(10)
            \mathcal{U} := \{\}
             for
each m \in \mathcal{M}^p
(11)
                if \bar{y}_{pmt} is not initialized
(12)
(13)
                   set y_{pmt} as integer
(14)
                   \mathcal{U} := \mathcal{U} \cup \{(p, m, t)\}
(15)
             solve lot sizing MIP
(16)
             foreach (p, m, t) \in \mathcal{U}
(17)
                fix y_{pmt} := \bar{y}_{pmt}
(18) return \bar{y}
```



```
Reconstruct(\bar{y})
      for t = 1 to T
(1)
          for
each p \in \mathcal{P}
(2)
             foreach m \in \mathcal{M}^p
(3)
                if \bar{y}_{pmt} is not initialized
(4)
(5)
                   relax y_{pmt}
(6)
                else
(7)
                   fix y_{pmt} := \bar{y}_{pmt}
       for t = 1 to T
(8)
(9)
          foreach p \in \mathcal{P}
(10)
            \mathcal{U} := \{\}
             for
each m \in \mathcal{M}^p
(11)
                if \bar{y}_{pmt} is not initialized
(12)
(13)
                   set y_{pmt} as integer
(14)
                   \mathcal{U} := \mathcal{U} \cup \{(p, m, t)\}
(15)
             solve lot sizing MIP
(16)
             foreach (p, m, t) \in \mathcal{U}
(17)
                fix y_{pmt} := \bar{y}_{pmt}
(18) return \bar{y}
```

A hybrid tabu search approach

- two-fold hybrid metaheuristic for lot sizing:
 - relax-and-fix-one-product is used to initialize a solution, or complete partial solutions
 - tabu search is responsible for creating diverse points for restarting relax-and-fix.
 - before each restart:
 - * the current tabu search solution is partially destructed
 - * its reconstruction is made by means of relax-and-fix-one-product

Solution representation

- For tabu search:
 - variables: y_{pmt} variables
 - all continuous variables can be determined in function of these
- Thus: a tabu search solution is a matrix of \bar{y}_{pmt} binary variables.

$$\begin{array}{ll} \text{minimise} & z = F + V + I + B \\ \text{subject to}: & F = \sum_{p \in \mathcal{P}} \sum_{m \in \mathcal{M}} \sum_{t \in \mathcal{T}} f_{pmt} y_{pmt} \\ & V = \sum_{p \in \mathcal{P}} \sum_{m \in \mathcal{M}} \sum_{t \in \mathcal{T}} v_{pmt} x_{pmt} \\ & I = \sum_{p \in \mathcal{P}} \sum_{t \in \mathcal{T}} i_{pt} h_{pt} \\ & B = \sum_{p \in \mathcal{P}} \sum_{t \in \mathcal{T}} b_{pt} g_{pt} \\ & h_{p,t-1} - g_{p,t-1} + \sum_{m \in \mathcal{M}^p} x_{pmt} = D_{pt} + h_{pt} - g_{pt}, \quad \forall \ p \in \mathcal{P}, \ \forall \ t \in \mathcal{T} \\ & \sum_{p \in \mathcal{P}:m \in \mathcal{M}^p} \frac{x_{pmt}}{\gamma_{pm}} + \tau_{pmt} y_{pmt} \quad \leq A_{mt}, \quad \forall \ m \in \mathcal{M}, \ \forall \ t \in \mathcal{T} \\ & x_{pmt} \leq \gamma_{pm} A_{mt} y_{pmt} \quad \forall \ p \in \mathcal{P}, \ \forall \ m \in \mathcal{M}^p, \ \forall \ t \in \mathcal{T} \\ & F, V, I, B \in \mathbb{R}^+, \quad \forall \ p \in \mathcal{P}, \ \forall \ t \in \mathcal{T} \\ & x_{pmt} \in \mathbb{R}^+, \quad y_{pmt} \in \{0,1\}, \quad \forall \ p \in \mathcal{P}, \ \forall \ m \in \mathcal{M}, \ \forall \ t \in \mathcal{T} \end{array}$$

Solution evaluation

- can be made through the solution of the lot sizing model
- with all the binary variables fixed at values $ar{y}_{pmt}$
- as all the binary variables are fixed, this problem is a linear program (LP)
- z at the optimal solution of this LP provides the evaluation of the quality of $ar{y}_{pmt}$
- values of all the other variables x, h and g corresponding to \bar{y}_{pmt} are also determined through this LP solution

Hybrid tabu search

TABUSEARCH(*tlim*, *seed*, *instance*)

- (1) store *instance* information $\mathcal{T}, \mathcal{P}, \mathcal{M}, f, g, \ldots$
- (2) initialize random number generator with seed
- (3) $\bar{y} := \text{RelaxAndFixOneProduct}()$
- $(4) \quad \bar{y}^* := \bar{y}$

(5)
$$n := |\mathcal{T}| \times |\mathcal{P}|$$

(6)
$$\Theta := ((-n, ..., -n), ..., (-n, ..., -n))$$

- (7) i := 1
- (8) while CPUTIME() < tlim

(9)
$$\bar{y} := \text{TABUMOVE}(\bar{y}, \bar{y}^*, i, \Theta)$$

(10) $\bar{y} := \text{TABUMOVE}(\bar{y}, \bar{y}^*, i, \Theta)$

(10) **if**
$$\bar{y}$$
 is better than \bar{y}
(11) $\bar{z}^* := \bar{z}$

(11)
$$\bar{y}^* := \bar{y}$$

(12) $i := i + 1$

(12)
$$\iota := \iota +$$

(13) return
$$ar{y}^{\star}$$

- based only on short term memory
- parameter: *tlim*, limit of CPU to be used in the search
- seed for initializing the random number generator
- name of the instance to be solved.

Neighborhood

- consists of solutions where:
 - manufacturing a product in a given period and machine is stopped
 - its manufacture is attempted in different machines, on the same period

Neighborhood

t=2

- consists of solutions where:
 - manufacturing a product in a given period and machine is stopped
 - its manufacture is attempted in different
 machines, on the same period

Neighborhood

Tabu moves

- neighbor is returned immediately if:
 - it improves the best found solution
 - it is not tabu and it improves the input solution
- if no improving move could be found in the whole neighborhood: we force a **diversification**:
 - solution is partially destructed
 - best found move is then applied and made tabu
 - solution is reconstructed

 \longrightarrow hybridization is on the destruction/reconstruction steps

Solution destruction

- start with a complete solution (all integer variables are fixed)
- randomly select a *non-tabu* variable

Solution destruction

- start with a complete solution (all integer variables are fixed)
- randomly select a *non-tabu* variable
- *un-initialize* it

Solution destruction

- start with a complete solution (all integer variables are fixed)
- randomly select a *non-tabu* variable
- *un-initialize* it

 \longrightarrow continue until having destructed $\alpha\%$ of the variables

 $\longrightarrow \alpha$ is a random uniform in [0,1], drawn at each iteration

Tabu information

Tabu information: kept in the matrix Θ

 Θ_{pm} holds the iteration at which a variable y_{pmt} has been updated

tabu tenure: is a random value, d

- drawn in each iteration between 1 and the number of integer variables
- if the current iteration is i, then a move involving product p and machine m:
 - is tabu if $i-\Theta_{pm}\leq d$
 - otherwise (i.e., if $i-\Theta_{pm}>d$) it is not tabu
- making it a random value simplifies the parameterization

Move during each tabu search iteration.

```
TABUMOVE(\bar{y}, \bar{y}^*, i, \Theta)
(1)
         \bar{y}' := \bar{y}
         for t = 1 to T
(2)
             foreach p \in \mathcal{P}
(3)
                 \mathcal{S} := \{ m \in \mathcal{M}^p : \bar{y}_{pmt} = 1 \}
(4)
                 \mathcal{U} := \{ m \in \mathcal{M}^p : \bar{y}_{pmt} = 0 \}
(5)
                 d := \mathscr{R}[1, |\mathcal{P}| \times |\mathcal{M}| \times |\mathcal{T}|]
(6)
(7)
                 foreach m \in S
(8)
                     fix \bar{y}_{pmt} := 0
                      if \bar{y} is better than \bar{y}^* or (i - \Theta_{pm} > d \text{ and } \bar{y} is better than \bar{y}')
(9)
(10)
                          return \bar{y}
                      if i - \Theta_{pm} > d and (\bar{y}^c) is not initialized or \bar{y} is better than \bar{y}^c)
(11)
                          \bar{y}^{c} := \bar{y}, m_{1} := (p, m, t)
(12)
                      foreach m' \in \mathcal{U}
(13)
(14)
                         fix \bar{y}_{pm't} := 1
                         if \bar{y} is better than \bar{y}^* or (i - \Theta_{pm} > d \text{ and } \bar{y} is better than \bar{y}')
(15)
(16)
                              return \bar{u}
                         if i - \Theta_{pm} > d and (\bar{y}^c) is not initialized or \bar{y} is better than \bar{y}^c)
(17)
                             \bar{y}^{c} := \bar{y}, m_{1} := (p, m, t), m_{2} := (p, m', t)
(18)
                          restore \bar{y}_{pm't}:=0
(19)
(20)
                      restore \bar{y}_{pmt} := 1
```

Computational results

- algorithms were tested on a series of benchmark instances
- instances derived from a real-world problem
 - 12 products
 - 12 periods
 - 15 machines
 - random demand (average: true estimated demand)
- smaller instances:
 - reduce the number of periods
 - randomly select a subset of products
 - machines: those compatible with the selected products

Instances – practical benchmarks

Name	Number of				
	periods	products	integers	variables	constraints
inst-02	2	2	20	56	45
inst-05	5	5	135	334	235
inst-07	7	7	210	536	369
inst-09	9	9	306	796	554
inst-12	12	12	492	1300	857

Results – practical benchmarks

Name	Relax-a	and-fix	Hybrid tabu search sol.			branch-and-
	time (s)	solution	worst	average	best	bound best sol.
inst-02	< 1	13.897	13.897	13.897	13.897	13.897*
inst-05	1.8	50.536	48.878	48.878	48.878	48.878
inst-07	2.9	131.095	126.030	126.265	126.595	127.604
inst-09	5.6	213.981	207.441	208.206	208.841	235.125
inst-12	13.1	277.451	274.283	274.397	274.626	431.660

Hybrid tabu search and branch-and-bound: 3600 seconds CPU time

Results – LOTSIZELIB benchmarks

Name	Relax-and-fix (average)		Hybrid tabu search sol.			branch-and-	optimal
	time (s)	solution	worst	average	best	bound best sol.	solution
pp08a	<1	7638.0	7380	7374	7360	7350	7350
rgna	$<\!\!1$	82.2	82.2	82.2	82.2	82.2	82.2
set1ch	13.4	56024.3	55243.5	55089.6	54950	60517.7	54537
tr6-15	1.3	40767.6	38357	38238	38054	39388	37721
tr6-30	5.1	67057.0	63422	63246.2	63132	63711	61746^*
tr12-30	69.1	143014.0	137371	136762.8	136299	1940337	130599^{*}

Hybrid tabu search and branch-and-bound: 3600 seconds CPU time

Optimal solutions: as reported in LOTSIZELIB.

(* indicate best known solutions)

Hybrid metaheuristic

47

Pure tabu search

Conclusion

- main motivation for this work
 - solve practical problem
 - exploitation of relax-and-fix in a setup which enforced diversity
 - tabu search mechanism was responsible for imposing changes on the solution
 - after changes were made:
 - * a part of the solution (not involving the latest changes) was destructed
 - * relax-and-fix was used to rebuild it.
- why hybridize:
 - non-improving moves made by tabu search rapidly force the solution into rather poor regions
 - reason: large number of moves required to change good solution into another good solution
 - "moves" done by relax-and-fix whenever tabu search cannot find improving neighbor
 - when improving neighbors are found, the destruction/reconstruction cycle were skipped
- computational results show advantage of this strategy, as compared to:
 - simple relax-and-fix-one-product heuristic
 - time-limited branch-and-bound