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Lot sizing

Considering all the orders, for the whole of
the planning horizon, decide:

e quantity of each lot to be produced
e when to produce each lot

e (not concerned with order of production in
the machines)
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How should it be produced?

period production

period production

Lot sizing problems

setup variables
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The lot sizing model

big bucket problem: more than one setup allowed per period, as long as machine capacities
respected
costs: (values for each of them can vary from period to period)
® setup costs
e variable production costs
e inventory and backlog costs
decision variables:
e manufacture or not of a product in each period: setup, binary variable ¥y,
— Ypmt = 1 if product p is manufactured in machine m during period ¢
— Ypmt = 0 otherwise
e amount produced: continuous variable x;,,;
— corresponding to Ypm.
- xpmt>0$ypmt:1
e inventory hy: and backlog g,



parameters:
T': number of periods, 7 = {1,...,T}
P: set of products
M set of machines
MP: subset of machines compatible with the production of p.



Objective

setup costs: F'= 3" 5> D icr fomt Ypmt
® fpm: is the cost of setting up machine m on period t for producing p

variable costs: V = Zpep Y o meM 2oteT Vpmt Tpmt
® U,m: is the variable cost of production of p on machine m, period ¢

inventory costs: I = > 5> 7 ipt hpt
® h, is the amount of product p that is kept in inventory at the end of period ¢
® 7, Is the unit inventory cost for product p on period ¢

backlog costs: B = > 5> c7 bpt gpt
® g, is the amount of product p that failed to meet demand at the end of period ¢
e b, is the unit backlog cost for product p on period ¢.

objective: minimisez = F 4+ V + 1+ B



Constraints:

setup on producing machines:
Lpmt Sf)/pm Amtypmt \VIPEP, Vm € Mpa vteT

Tpmt amount produced
Ypmt corresponding setup

time availability on each period:

xm
> b et < Ami YmEM, VteT.

pEP:meMP Ypm

Ypm is the total capacity of production of product p on machine m per time unit
Tpmt 15 the setup time required if there is production of p on machine m during period ¢
A, is the number of time units available for production on machine m during period t.



flow conservation:

hp,t—l — Jp,t—1 + Z Lpmt — Dpt + hpt — gpt v p < 737 vteT.
meMP

hpo, hpr: initial and final inventory
gpo, gpr: initial and final backlog



minimise

subject to :

z=F+V+I1+B

F = y: y: y:fpmt Ypmt

pEP meM teT

V = y: y: y:’vpmt Lpmt

pEP meM teT

I:ZZ’I:pt hpt

peEP teT
B=3"3bun
peEP teT
hpi—1— Gpi-1+ D Tpmi = Dyt +hypt —gp, VPEP, VteT

meMP

X m
Z pt+Tpmtypmt < Ani, YmeM,VteT
pEP:meMP Ypm
Tpmt < Ypm Amt Ypmt VD EP, Vme MP, VteT

F.V,I,BeR"

hpt7 gpt€R+a vaP,VtET

Tpmt € RT, ypme € {0,1}, VpEP,YmMmEM,VteT 8
(1)



Construction: relax-and-fix-one-product

e construction of a solution: based on partial relaxations of the initial problem

e variant of the classic relax-and-fix heuristic



Relax-and-fix

e each period is treated independently

T— -l e relax all the variables except those of period 1:
— keep ypm1 integer
.._2 — relax integrity for all other ypm.
- e solve this MIP, determining heuristic values
for Ypma1
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Relax-and-fix

e cach period is treated independently
— e relax all the variables except those of period 1:
— keep ypm1 integer
1 — relax integrity for all other ypm.

e solve this MIP, determining heuristic values
for Ypm1

e move to the second period:
— variables of the first period are fixed at

Ypml = gpml
— variables y,,2 are integer
-I-_T — and all the other y,,; relaxed

e this determines the heuristic value for ypm2
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Relax-and-fix

e cach period is treated independently
'|'= -l e relax all the variables except those of period 1:
— keep ypm1 integer
_I_ 2 — relax integrity for all other ypm.
- e solve this MIP, determining heuristic values
for gpml
e move to the second period:
o — variables of the first period are fixed at
Ypm1l — gpml
— variables y,,2 are integer
_|__-|- — and all the other y,,+ relaxed

e this determines the heuristic value for ypm2

e these steps are repeated, until all the y
variables are fixed
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Relax-and-fix heuristic.

reported to provide very good solutions for many lot sizing problems
however, for large instances the exact MIP solution of even a single period can be too time

consuming
we propose a variant were each MIP determines only the variables of one period that concern

a single product — relax-and-fix-one-product
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Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()

(1) relax all ypm: as continuous variables
(2) fort =1to T

(3) foreachp € P

(4) foreach m € M?

(5) set Ypme as integer

(

(

(

(

6) solve MIP— 4pmt, Vm € MP
7) foreach m € M?
3

) fiX Ypmt 1= Ypmt
9) return y
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Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()

(1) relax all ypm: as continuous variables
(2) fort =1to T

(3) foreachp € P
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(

6) solve MIP— 4pmt, Vm € MP
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) fiX Ypmt 1= Ypmt
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Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()

T—= -| (1) relax all ypm: as continuous variables
(2) fort =1to T
=2 (3) foreachp € P
(4) foreach m € M?
(5) set Ypme as integer
(6) solve MIP— §pmt, VM € MP
oo (7) foreach m € M?
(8) fix Ypmt ‘= Ypmt
(9) return y
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Relax-and-fix-one-product variant.
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Relax-and-fix-one-product variant.

RELAXANDFIXONEPRODUCT()

(1) relax all ypm: as continuous variables
(2) fort =1to T

(3) foreach p € P

(4) foreach m € M?P

(5) set Ypme as integer

(6) solve MIP— §pmt, VM € MP
(7) foreach m € M?

(8) fiX Ypmt 1= Ypme

(9) return y

Additional advantage: if repeated, can
produce different solutions

—— repeat it a number of times, retain
the best found solution
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Solution reconstruction

e relax-and-fix-one-product construction mechanism can be used for completing a solution that
has been partially destructed

e check if incoming Y+ variables are initialized or not;
— if they are initialized, they should be fixed in the MIP at their current value
— otherwise, they are treated as in the previous algorithm:
x* made integer if they belong to the period and product currently being dealt
* relaxed otherwise
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RECONSTRUCT(Y)
(1) fort=1toT

(2) foreach p € P

(3) foreach m ¢ MP

(4) if Ypmt is not initialized
(5) relax Ypmt

(6) else

(7) fix Ypmt ‘= Ypmt

(8) fort=1toT

(9) foreach p € P

(10) U:=1{}

(11) foreach m € MP

(12) if Ypmt is not initialized
(13) set Ypmt as integer
(14) U = UU {(p,m, 1)}
(15) solve lot sizing MIP

(16) foreach (p, m,t) € U
(17) fiX Ypmt := Ypmt

(18) return g
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A hybrid tabu search approach

e two-fold hybrid metaheuristic for lot sizing:
— relax-and-fix-one-product is used to initialize a solution, or complete partial solutions
— tabu search is responsible for creating diverse points for restarting relax-and-fix.
— before each restart:
* the current tabu search solution is partially destructed
* Its reconstruction is made by means of relax-and-fix-one-product
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Solution representation

e For tabu search:

— variables: y,m,: variables
— all continuous variables can be determined in function of these

e Thus: a tabu search solution is a matrix of ¢, binary variables.
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minimise

subject to :

z=F+V+I1+B

F = y: y: y:fpmt Ypmt

pEP meM teT

V = y: y: y:’vpmt Lpmt

pEP meM teT

I:ZZ’I:pt hpt

peEP teT
B=3"3bun
peEP teT
hpi—1— Gpi-1+ D Tpmi = Dyt +hypt —gp, VPEP, VteT

meMP

X m
Z pt+Tpmtypmt < Ani, YmeM,VteT
pEP:meMP Ypm
Tpmt < Ypm Amt Ypmt VD EP, Vme MP, VteT

F.V,I,BeR"

hot, gt €EIRT, VpeP, VteT

Tpmt € RT, ypme € {0,1}, VpEP,YmMmEM,VteT 30
(2)



Solution evaluation

can be made through the solution of the lot sizing model

with all the binary variables fixed at values ¥pm

as all the binary variables are fixed, this problem is a linear program (LP)

z at the optimal solution of this LP provides the evaluation of the quality of ¥+

values of all the other variables x, h and g corresponding to 4,m+ are also determined through
this LP solution
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Hybrid tabu search

TABUSEARCH( tlim, seed, instance)

(1)  store instance information 7, P, M, f,g, ...
(2) initialize random number generator with seed
(3) ¥ := RELAXANDFIXONEPRODUCT()

4 v =9

(5) n:=|T|x|[P]|

6) ©:=((-n,...,—n),...,(—n,...,—n))
(7) 1 :=1

(8) while CPUTIME() < tlim

(9) g := TaBUMOVE(%, 7™, i, ©)

(10) if 7 is better than 7™

(11) g =9

(12) 1:=1+ 1

(13) return 7™

based only on short term memory

parameter: t/im, limit of CPU to be used in
the search

seed for initializing the random number
generator

name of the instance to be solved.
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Neighborhood

® consists of solutions where:

manufacturing a product in a given period
and machine is stopped

its manufacture is attempted in different
machines, on the same period
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Neighborhood

® consists of solutions where:
Machine 1 Machine 2 Machine 3 . . . .
| t=2 — manufacturing a product in a given period

T .
EREEE Eq\ [] and machine is stopped

— its manufacture is attempted in different

/ machines, on the same period

N
ﬂMﬁmTef J ﬂMT@fﬂTef J EMTCFTMI} =2
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Neighborhood

® consists of solutions where:
Machine 1 Machine 2 Machine 3 . . . .
| t=2 — manufacturing a product in a given period

nnin)|y nun|jeEns ring
i and machine is stopped
m — its manufacture is attempted in different
7 machines, on the same period
Machine 1 I\/Iog%ine 2 Machine 3
(TTTO|[CCIT O (T | ™

—— this is a composed neighborhood, where one

/
Mo%hine] Machine 2 | |Machine 3 or two move_s are allowe_d' )
(W T ITTITOIIIIm| =2 —— otherwise: for n integer (setup) variables,
n? neighbors to check
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Tabu moves

® neighbor is returned immediately if:
— it improves the best found solution
— it is not tabu and it improves the input solution

e if no improving move could be found in the whole neighborhood:
we force a diversification:

— solution is partially destructed
— best found move is then applied and made tabu
— solution is reconstructed

—— hybridization is on the destruction/reconstruction steps

36



Solution destruction

e start with a complete solution (all integer
T— -| variables are fixed)

e randomly select a non-tabu variable
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Solution destruction

e start with a complete solution (all integer
T— -| variables are fixed)

e randomly select a non-tabu variable
=2 o un-initialize it
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Solution destruction

e start with a complete solution (all integer

T— -| variables are fixed)
e randomly select a non-tabu variable
=2 ® un-initialize it
Co —— continue until having destructed a% of

the variables

-|-=T — « is a random uniform in [0, 1], drawn
at each iteration
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Tabu information

Tabu information: kept in the matrix ©
©,m holds the iteration at which a variable y,,,+ has been updated

tabu tenure: is a random value, d

e drawn in each iteration between 1 and the number of integer variables

e if the current iteration is %, then a move involving product p and machine m:
— istabuif 2 — ©,, < d
— otherwise (i.e., if ¢ — ©,,,, > d) it is not tabu

e making it a random value simplifies the parameterization
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Move during each tabu search iteration.

TABUMOVE(7, 5™, 1, ©)

(1) 7 =7

(2) fort=1toT

(3) foreach p € P

(4) S:={meMP:y,, =1}

(5) U:={me MP: gy, =0}

(6) d:= Z[1, |P| x [M] x|T]]

(7) foreach m € S

(8) fix Ypme := 0

(9) if § is better than §* or (i — ©pm > d and ¥ is better than 7')
(10) return g

(11) if i — ©pm > d and (F€ is not initialized or § is better than §©)
(12) g© =g, my = (p,m, 1)

(13) foreach m’ € U

(14) fix gpm,t =1

(15) if 7 is better than §™ or (i — ©pm > d and § is better than g’)
(16) return g

(17) if i — Opm > d and (€ is not initialized or ¥ is better than §€)
(18) 7€ =g, my = (p,m,t), mg := (p,m’, 1)

(19) restore gpm/t =0

(20) restore Ypm¢ = 1
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a =X
un-initialize % of the §€ variables
if §€ is not initialized
select a random index (p, m, t)
~C ._ = =C R = .
Y=Y Ypmt =1~ Tpmt Opm :
else
(p,m,t) :=m71, Opm =1
if mo is initialized
(p,m,t) ;= mg, Opm =1
g :=RECONSTRUCT(F°)
return y



Computational results

algorithms were tested on a series of benchmark instances

instances derived from a real-world problem

— 12 products

— 12 periods

— 15 machines

— random demand (average: true estimated demand)

smaller instances:

— reduce the number of periods
— randomly select a subset of products
— machines: those compatible with the selected products
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Instances — practical benchmarks

Name | Number of | Number of | Number of | Number of | Number of
periods products integers variables constraints
inst-02 2 2 20 56 45
inst-05 5 5 135 334 235
inst-07 7 7 210 536 369
inst-09 ) 9 306 796 554
inst-12 12 12 492 1300 8b7
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Results — practical benchmarks

Name Relax-and-fix Hybrid tabu search sol. branch-and-

time (s) solution worst average best | bound best sol.
inst-02 <1 13.897 13.897 13.897 13.897 13.897"
inst-05 1.8 50.536 48.878 48.878 48.878 43.878
inst-07 2.9 131.095| 126.030 126.265 126.595 127.604
inst-09 5.6 213.981| 207.441 208.206 208.841 235.125
inst-12 13.1 277.451| 274.283 274.397 274.626 431.660

Hybrid tabu search and branch-and-bound: 3600 seconds CPU time
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Results — LOTSIZELIB benchmarks

Name | Relax-and-fix (average) | Hybrid tabu search sol. branch-and-| optimal

time (s) solution worst average  best| bound best sol.| solution
pp08a <1 7638.0 7380 7374 7360 7350 7350
rgna <1 82.2 82.2 82.2 82.2 82.2 82.2
setlch 13.4 56024.3 | 55243.5 55089.6 54950 60517.7 54537
tr6-15 1.3 40767.6| 38357 38238 38054 39388 37721
tr6-30 5.1 67057.0| 63422 63246.2 63132 63711 | 61746"
tr12-30 69.1 143014.0| 137371 136762.8 136299 1940337 | 130599"

Hybrid tabu search and branch-and-bound: 3600 seconds CPU time

Optimal solutions: as reported in LOTSIZELIB.

(* indicate best known solutions)
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Hybrid metaheuristic
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Pure tabu search
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Conclusion

main motivation for this work
— solve practical problem
— exploitation of relax-and-fix in a setup which enforced diversity
— tabu search mechanism was responsible for imposing changes on the solution
— after changes were made:
* a part of the solution (not involving the latest changes) was destructed
* relax-and-fix was used to rebuild it.
why hybridize:
— non-improving moves made by tabu search rapidly force the solution into rather poor regions
— reason: large number of moves required to change good solution into another good solution
— “moves” done by relax-and-fix whenever tabu search cannot find improving neighbor
— when improving neighbors are found, the destruction/reconstruction cycle were skipped
computational results show advantage of this strategy, as compared to:
— simple relax-and-fix-one-product heuristic
— time-limited branch-and-bound
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