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Lot sizing

Machine MachineMachine
1 2 3

Machine MachineMachine
1 2 3

t=1

t=2

. . . 

Demand
Lot

Considering all the orders, for the whole of

the planning horizon, decide:

• quantity of each lot to be produced

• when to produce each lot

• (not concerned with order of production in

the machines)
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Lot sizing problems

Ex: for a single product:

period demand

1 100
2 100
3 100
4 100
5 100
6 100

How should it be produced?

period production

1 100
2 100
3 100
4 100
5 100
6 100

period production

1 600
2 0
3 0
4 0
5 0
6 0

period production

1 0
2 0
3 0
4 0
5 0
6 600

• setup variables

• production variables

• inventory

• backlog
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The lot sizing model

big bucket problem: more than one setup allowed per period, as long as machine capacities

respected

costs: (values for each of them can vary from period to period)

• setup costs

• variable production costs

• inventory and backlog costs

decision variables:

• manufacture or not of a product in each period: setup, binary variable ypmt

– ypmt = 1 if product p is manufactured in machine m during period t

– ypmt = 0 otherwise

• amount produced: continuous variable xpmt

– corresponding to ypmt.

– xpmt > 0 ⇒ ypmt = 1

• inventory hpt and backlog gpt
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parameters:

T : number of periods, T = {1, . . . , T}
P: set of products

M: set of machines

Mp: subset of machines compatible with the production of p.
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Objective

setup costs: F =
P

p∈P
P

m∈M
P

t∈T fpmt ypmt

• fpmt is the cost of setting up machine m on period t for producing p

variable costs: V =
P

p∈P
P

m∈M
P

t∈T vpmt xpmt

• vpmt is the variable cost of production of p on machine m, period t

inventory costs: I =
P

p∈P
P

t∈T ipt hpt

• hpt is the amount of product p that is kept in inventory at the end of period t

• ipt is the unit inventory cost for product p on period t

backlog costs: B =
P

p∈P
P

t∈T bpt gpt

• gpt is the amount of product p that failed to meet demand at the end of period t

• bpt is the unit backlog cost for product p on period t.

objective: minimise z = F + V + I + B
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Constraints:

setup on producing machines:

xpmt ≤ γpm Amt ypmt ∀ p ∈ P, ∀ m ∈ Mp
, ∀ t ∈ T

xpmt amount produced

ypmt corresponding setup

time availability on each period:

X

p∈P:m∈Mp

ţ
xpmt

γpm

+ τpmt ypmt

ű
≤ Amt ∀ m ∈ M, ∀ t ∈ T .

γpm is the total capacity of production of product p on machine m per time unit

τpmt is the setup time required if there is production of p on machine m during period t

Amt is the number of time units available for production on machine m during period t.
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flow conservation:

hp,t−1 − gp,t−1 +
X

m∈Mp

xpmt = Dpt + hpt − gpt ∀ p ∈ P, ∀ t ∈ T .

hp0, hpT : initial and final inventory

gp0, gpT : initial and final backlog
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minimise z = F + V + I + B

subject to : F =
X

p∈P

X

m∈M

X

t∈T
fpmt ypmt

V =
X

p∈P

X

m∈M

X

t∈T
vpmt xpmt

I =
X

p∈P

X

t∈T
ipt hpt

B =
X

p∈P

X

t∈T
bpt gpt

hp,t−1 − gp,t−1 +
X

m∈Mp

xpmt = Dpt + hpt − gpt, ∀ p ∈ P, ∀ t ∈ T
X

p∈P:m∈Mp

ţ
xpmt

γpm

+ τpmt ypmt

ű
≤ Amt, ∀ m ∈ M, ∀ t ∈ T

xpmt ≤ γpm Amt ypmt ∀ p ∈ P, ∀ m ∈ Mp, ∀ t ∈ T

F, V, I, B ∈ IR+

hpt, gpt ∈ IR+, ∀ p ∈ P, ∀ t ∈ T
xpmt ∈ IR+, ypmt ∈ {0, 1}, ∀ p ∈ P, ∀ m ∈ M, ∀ t ∈ T

(1)
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Construction: relax-and-fix-one-product

• construction of a solution: based on partial relaxations of the initial problem

• variant of the classic relax-and-fix heuristic

9



Relax-and-fix

t=1
t=2

. . . 

t=T

• each period is treated independently

• relax all the variables except those of period 1:

– keep ypm1 integer

– relax integrity for all other ypmt

• solve this MIP, determining heuristic values

for ȳpm1
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Relax-and-fix

t=1
t=2

. . . 

t=T

• each period is treated independently

• relax all the variables except those of period 1:

– keep ypm1 integer

– relax integrity for all other ypmt

• solve this MIP, determining heuristic values

for ȳpm1

• move to the second period:

– variables of the first period are fixed at

ypm1 = ȳpm1

– variables ypm2 are integer

– and all the other ypmt relaxed

• this determines the heuristic value for ypm2
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Relax-and-fix

t=1
t=2

. . . 

t=T

• each period is treated independently
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ypm1 = ȳpm1
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– and all the other ypmt relaxed

• this determines the heuristic value for ypm2

• these steps are repeated, until all the y

variables are fixed
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Relax-and-fix heuristic.

• reported to provide very good solutions for many lot sizing problems

• however, for large instances the exact MIP solution of even a single period can be too time

consuming

• we propose a variant were each MIP determines only the variables of one period that concern

a single product → relax-and-fix-one-product
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Relax-and-fix-one-product variant.

t=1
t=2

. . . 

t=T

RelaxAndFixOneProduct()

(1) relax all ypmt as continuous variables

(2) for t = 1 to T

(3) foreach p ∈ P
(4) foreach m ∈ Mp

(5) set ypmt as integer

(6) solve MIP→ ȳpmt, ∀m ∈ Mp

(7) foreach m ∈ Mp

(8) fix ypmt := ȳpmt

(9) return ȳ
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(9) return ȳ
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(9) return ȳ
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Relax-and-fix-one-product variant.

t=1
t=2

. . . 

t=T

RelaxAndFixOneProduct()

(1) relax all ypmt as continuous variables

(2) for t = 1 to T

(3) foreach p ∈ P
(4) foreach m ∈ Mp

(5) set ypmt as integer

(6) solve MIP→ ȳpmt, ∀m ∈ Mp

(7) foreach m ∈ Mp

(8) fix ypmt := ȳpmt

(9) return ȳ

Additional advantage: if repeated, can

produce different solutions

−→ repeat it a number of times, retain

the best found solution
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Solution reconstruction

• relax-and-fix-one-product construction mechanism can be used for completing a solution that

has been partially destructed

• check if incoming ȳpmt variables are initialized or not;

– if they are initialized, they should be fixed in the MIP at their current value

– otherwise, they are treated as in the previous algorithm:

∗ made integer if they belong to the period and product currently being dealt

∗ relaxed otherwise
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t=1
t=2

. . . 

t=T

Reconstruct(ȳ)
(1) for t = 1 to T
(2) foreach p ∈ P
(3) foreach m ∈ Mp

(4) if ȳpmt is not initialized
(5) relax ypmt

(6) else
(7) fix ypmt := ȳpmt

(8) for t = 1 to T
(9) foreach p ∈ P
(10) U := {}
(11) foreach m ∈ Mp

(12) if ȳpmt is not initialized
(13) set ypmt as integer
(14) U := U ∪ {(p, m, t)}
(15) solve lot sizing MIP
(16) foreach (p, m, t) ∈ U
(17) fix ypmt := ȳpmt

(18) return ȳ
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A hybrid tabu search approach

• two-fold hybrid metaheuristic for lot sizing:

– relax-and-fix-one-product is used to initialize a solution, or complete partial solutions

– tabu search is responsible for creating diverse points for restarting relax-and-fix.

– before each restart:

∗ the current tabu search solution is partially destructed

∗ its reconstruction is made by means of relax-and-fix-one-product
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Solution representation

• For tabu search:

– variables: ypmt variables

– all continuous variables can be determined in function of these

• Thus: a tabu search solution is a matrix of ȳpmt binary variables.
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minimise z = F + V + I + B

subject to : F =
X

p∈P

X

m∈M

X

t∈T
fpmt ypmt

V =
X

p∈P

X

m∈M

X

t∈T
vpmt xpmt

I =
X

p∈P

X

t∈T
ipt hpt

B =
X

p∈P

X

t∈T
bpt gpt

hp,t−1 − gp,t−1 +
X

m∈Mp

xpmt = Dpt + hpt − gpt, ∀ p ∈ P, ∀ t ∈ T
X

p∈P:m∈Mp

ţ
xpmt

γpm

+ τpmt ypmt

ű
≤ Amt, ∀ m ∈ M, ∀ t ∈ T

xpmt ≤ γpm Amt ypmt ∀ p ∈ P, ∀ m ∈ Mp, ∀ t ∈ T

F, V, I, B ∈ IR+

hpt, gpt ∈ IR+, ∀ p ∈ P, ∀ t ∈ T
xpmt ∈ IR+, ypmt ∈ {0, 1}, ∀ p ∈ P, ∀ m ∈ M, ∀ t ∈ T

(2)
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Solution evaluation

• can be made through the solution of the lot sizing model

• with all the binary variables fixed at values ȳpmt

• as all the binary variables are fixed, this problem is a linear program (LP)

• z at the optimal solution of this LP provides the evaluation of the quality of ȳpmt

• values of all the other variables x, h and g corresponding to ȳpmt are also determined through

this LP solution
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Hybrid tabu search

TabuSearch(tlim, seed, instance)
(1) store instance information T ,P,M, f, g, . . .
(2) initialize random number generator with seed
(3) ȳ := RelaxAndFixOneProduct()
(4) ȳ∗ := ȳ
(5) n := |T | × |P|
(6) Θ := ((−n, . . . ,−n), . . . , (−n, . . . ,−n))
(7) i := 1
(8) while CPUtime() < tlim
(9) ȳ := TabuMove(ȳ, ȳ∗, i, Θ)
(10) if ȳ is better than ȳ∗
(11) ȳ∗ := ȳ
(12) i := i + 1
(13) return ȳ∗

• based only on short term memory

• parameter: tlim, limit of CPU to be used in

the search

• seed for initializing the random number

generator

• name of the instance to be solved.
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Neighborhood

Machine 1 Machine 2 Machine 3
t=2

• consists of solutions where:

– manufacturing a product in a given period

and machine is stopped

– its manufacture is attempted in different

machines, on the same period
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Neighborhood

Machine 1

Machine 1 Machine 2 Machine 3
t=2

Machine 2 Machine 3
t=2

• consists of solutions where:

– manufacturing a product in a given period

and machine is stopped

– its manufacture is attempted in different

machines, on the same period
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Neighborhood

Machine 1

Machine 1 Machine 2 Machine 3
t=2

Machine 2 Machine 3
t=2

Machine 1

Machine 2 Machine 3
t=2

• consists of solutions where:

– manufacturing a product in a given period

and machine is stopped

– its manufacture is attempted in different

machines, on the same period

−→ this is a composed neighborhood, where one

or two moves are allowed.

−→ otherwise: for n integer (setup) variables,

n2 neighbors to check
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Tabu moves

• neighbor is returned immediately if:

– it improves the best found solution

– it is not tabu and it improves the input solution

• if no improving move could be found in the whole neighborhood:

we force a diversification:

– solution is partially destructed

– best found move is then applied and made tabu

– solution is reconstructed

−→ hybridization is on the destruction/reconstruction steps
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Solution destruction

t=1
t=2

. . . 

t=T

• start with a complete solution (all integer

variables are fixed)

• randomly select a non-tabu variable
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Solution destruction

t=1
t=2

. . . 

t=T

• start with a complete solution (all integer

variables are fixed)

• randomly select a non-tabu variable

• un-initialize it
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Solution destruction

t=1
t=2

. . . 

t=T

• start with a complete solution (all integer

variables are fixed)

• randomly select a non-tabu variable

• un-initialize it

−→ continue until having destructed α% of

the variables

−→ α is a random uniform in [0, 1], drawn

at each iteration
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Tabu information

Tabu information: kept in the matrix Θ

Θpm holds the iteration at which a variable ypmt has been updated

tabu tenure: is a random value, d

• drawn in each iteration between 1 and the number of integer variables

• if the current iteration is i, then a move involving product p and machine m:

– is tabu if i−Θpm ≤ d

– otherwise (i.e., if i−Θpm > d) it is not tabu

• making it a random value simplifies the parameterization
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Move during each tabu search iteration.

TabuMove(ȳ, ȳ∗, i, Θ)
(1) ȳ′ := ȳ
(2) for t = 1 to T
(3) foreach p ∈ P
(4) S := {m ∈ Mp : ȳpmt = 1}
(5) U := {m ∈ Mp : ȳpmt = 0}
(6) d := R[1, |P| × |M| × |T |]
(7) foreach m ∈ S
(8) fix ȳpmt := 0

(9) if ȳ is better than ȳ∗ or (i−Θpm > d and ȳ is better than ȳ′)
(10) return ȳ
(11) if i−Θpm > d and (ȳc is not initialized or ȳ is better than ȳc)
(12) ȳc := ȳ, m1 := (p, m, t)

(13) foreach m′ ∈ U
(14) fix ȳpm′t := 1

(15) if ȳ is better than ȳ∗ or (i−Θpm > d and ȳ is better than ȳ′)
(16) return ȳ
(17) if i−Θpm > d and (ȳc is not initialized or ȳ is better than ȳc)

(18) ȳc := ȳ, m1 := (p, m, t), m2 := (p, m′, t)
(19) restore ȳpm′t := 0

(20) restore ȳpmt := 1
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(21) α := R
(22) un-initialize α% of the ȳc variables
(23) if ȳc is not initialized
(24) select a random index (p, m, t)
(25) ȳc := ȳ, ȳc

pmt := 1− ȳpmt, Θpm := i

(26) else
(27) (p, m, t) := m1, Θpm := i
(28) if m2 is initialized
(29) (p, m, t) := m2, Θpm := i
(30) ȳ :=Reconstruct(ȳc)

(31) return ȳ
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Computational results

• algorithms were tested on a series of benchmark instances

• instances derived from a real-world problem

– 12 products

– 12 periods

– 15 machines

– random demand (average: true estimated demand)

• smaller instances:

– reduce the number of periods

– randomly select a subset of products

– machines: those compatible with the selected products

43



Instances – practical benchmarks

Name Number of Number of Number of Number of Number of

periods products integers variables constraints

inst-02 2 2 20 56 45

inst-05 5 5 135 334 235

inst-07 7 7 210 536 369

inst-09 9 9 306 796 554

inst-12 12 12 492 1300 857
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Results – practical benchmarks

Name Relax-and-fix Hybrid tabu search sol. branch-and-

time (s) solution worst average best bound best sol.

inst-02 < 1 13.897 13.897 13.897 13.897 13.897∗

inst-05 1.8 50.536 48.878 48.878 48.878 48.878

inst-07 2.9 131.095 126.030 126.265 126.595 127.604

inst-09 5.6 213.981 207.441 208.206 208.841 235.125

inst-12 13.1 277.451 274.283 274.397 274.626 431.660

Hybrid tabu search and branch-and-bound: 3600 seconds CPU time
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Results – LOTSIZELIB benchmarks

Name Relax-and-fix (average) Hybrid tabu search sol. branch-and- optimal

time (s) solution worst average best bound best sol. solution

pp08a <1 7638.0 7380 7374 7360 7350 7350

rgna <1 82.2 82.2 82.2 82.2 82.2 82.2

set1ch 13.4 56024.3 55243.5 55089.6 54950 60517.7 54537

tr6-15 1.3 40767.6 38357 38238 38054 39388 37721

tr6-30 5.1 67057.0 63422 63246.2 63132 63711 61746∗

tr12-30 69.1 143014.0 137371 136762.8 136299 1940337 130599∗

Hybrid tabu search and branch-and-bound: 3600 seconds CPU time

Optimal solutions: as reported in LOTSIZELIB.

(∗ indicate best known solutions)
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Conclusion

• main motivation for this work

– solve practical problem

– exploitation of relax-and-fix in a setup which enforced diversity

– tabu search mechanism was responsible for imposing changes on the solution

– after changes were made:

∗ a part of the solution (not involving the latest changes) was destructed

∗ relax-and-fix was used to rebuild it.

• why hybridize:

– non-improving moves made by tabu search rapidly force the solution into rather poor regions

– reason: large number of moves required to change good solution into another good solution

– “moves” done by relax-and-fix whenever tabu search cannot find improving neighbor

– when improving neighbors are found, the destruction/reconstruction cycle were skipped

• computational results show advantage of this strategy, as compared to:

– simple relax-and-fix-one-product heuristic

– time-limited branch-and-bound
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