A hybrid metaheuristic for production planning

João Pedro **PEDROSO** Universidade do Porto, Portugal jpp@ncc.up.pt

Makoto **OHNISHI** Fujitsu Research Institute, Japan ohnishi@fri.fujitsu.com

Mikio **KUBO** Tokyo University of Marine Science and Technology, Japan kubo@e.kaiyodai.ac.jp

MIC, Vienna, August 2005

Introduction

This work deals with two problems arising in production planning:

- lot sizing
- scheduling
- usually these problems are treated separately
- for both problems: exact solution can be rather hard
- appropriate solvers are different:
 - lot sizing \longrightarrow mixed integer programming (MIP)
 - scheduling \longrightarrow constraint programming
- metaheuristics: provide a unified framework
- this work: focus on the *integration*

Motivation

- Practical problem:
 - large industry
 - stable demand
 - production site where raw materials are transformed into end products.
- Currently:
 - scheduling operations come from customer orders
 - scheduling based on feasibility: no notion of cost involved
 - demand is stable \longrightarrow why not think about lot sizes?
- Aim:
 - formalise the problem
 - lot sizing + scheduling \longrightarrow scheduling operations derived from good/optimal lot sizes
 - implement a prototype
 - check feasibility of the approach with nearly-real data
- Planning:
 - Short term (scheduling): monthly basis
 - Medium term (lot sizing): yearly basis

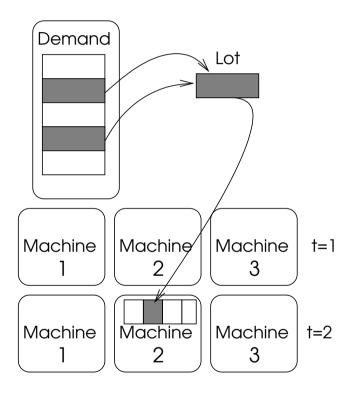
Background

Previous work in this area: *LISCOS* European project

- Exact approaches
- MIP for lot sizing
- Constraint programming for scheduling
- Both are commercial solvers
- Cost \longrightarrow not appropriate for prototyping

 \longrightarrow metaheuristics

Lot sizing

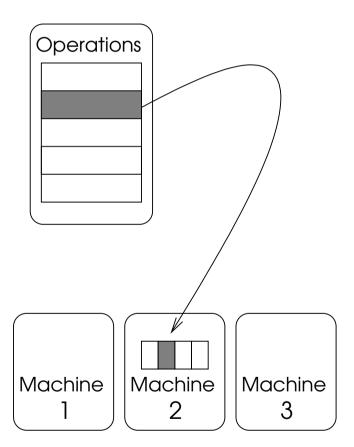


. . .

Considering all the orders, for the whole of the planning horizon, decide:

- quantity of each lot to be produced
- when to produce each lot
- (not concerned with *order of production* in the machines)

Scheduling

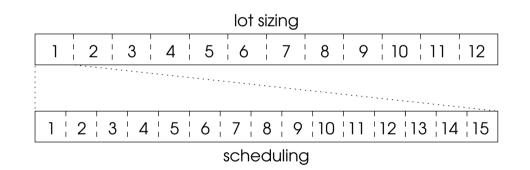


For each operation of a given period of the lot sizing problem:

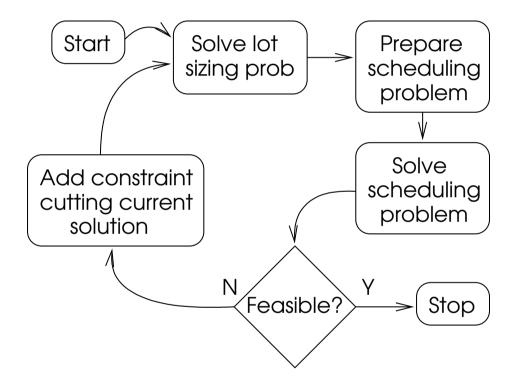
- assign it to a machine
- assign it an order in the operations of that machine
- detail: machines can operate in several modes:
 - full capacity \longrightarrow higher cost
 - reduced capacity \longrightarrow lower cost

Time horizons

- are different for lot sizing and for scheduling
- \bullet horizon for scheduling \leftrightarrow one period of lot sizing model
- usually: scheduling only for the first period of lot sizing



Main solution procedure



Lot sizing model

- Costs:
 - setup (fixed) costs
 - variable production costs
 - inventory
 - backlog
- Decision varibles:
 - manufacture or not of a product in each period: setup, binary variable y_{pmt}
 - $* y_{pmt} = 1$ if product p is manufactured in machine m during period t
 - * $y_{pmt} = 0$ otherwise
 - amount produced: continuous variable x_{pmt}
 - * corresponding to y_{pmt} .
 - * $x_{pmt} > 0 \Rightarrow y_{pmt} = 1$
 - inventory h_{pt} and backlog g_{pt}

Objective

setup costs: $F = \sum_{p \in \mathcal{P}} \sum_{m \in \mathcal{M}} \sum_{t \in \mathcal{T}} f_{pmt} y_{pmt}$

• f_{pmt} is the cost of setting up machine m on period t for producing p

variable costs: $V = \sum_{p \in \mathcal{P}} \sum_{m \in \mathcal{M}} \sum_{t \in \mathcal{T}} v_{pmt} x_{pmt}$

• v_{pmt} is the variable cost of production of p on machine m, period t

inventory costs: $I = \sum_{p \in \mathcal{P}} \sum_{t \in \mathcal{T}} i_{pt} h_{pt}$

- h_{pt} is the amount of product p that is kept in inventory at the end of period t
- i_{pt} is the unit inventory cost for product p on period t

backlog costs: $B = \sum_{p \in \mathcal{P}} \sum_{t \in \mathcal{T}} b_{pt} g_{pt}$

- g_{pt} is the amount of product p that failed to meet demand at the end of period t
- b_{pt} is the unit backlog cost for product p on period t.

objective: minimise z = F + V + I + B

Constraints:

flow conservation:

$$h_{p,t-1} - g_{p,t-1} + \sum_{m \in \mathcal{M}^p} x_{pmt} = D_{pt} + h_{pt} - g_{pt} \quad \forall \ p \in \mathcal{P}, \ \forall \ t \in \mathcal{T}.$$

 h_{p0} , h_{pT} : initial and final inventory g_{p0} , g_{pT} : initial and final backlog time availability on each period:

$$\sum_{p \in \mathcal{P}: m \in \mathcal{M}^p} \left(\frac{x_{pmt}}{\gamma_{pm}} + \tau_{pmt} \ y_{pmt} \right) \le A_{mt} \quad \forall \ m \in \mathcal{M}, \ \forall \ t \in \mathcal{T}.$$

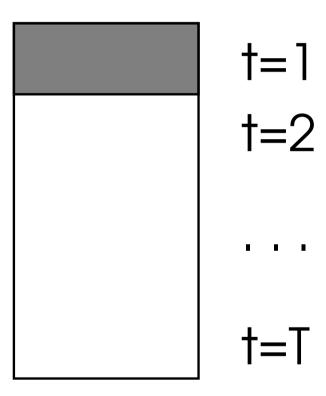
 γ_{pm} is the total capacity of production of product p on machine m per time unit τ_{pmt} is the setup time required if there is production of p on machine m during period t. A_{mt} is the number of time units available for production on machine m during period t. **setup constraints:**

$$x_{pmt} \leq \gamma_{pm} |A_{mt}| y_{pmt}$$

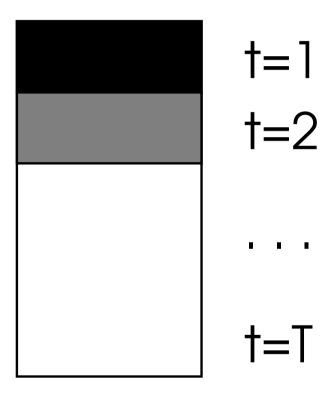
$$\begin{array}{ll} \text{minimise} & z = F + V + I + B \\ \text{subject to}: & F = \sum_{p \in \mathcal{P}} \sum_{m \in \mathcal{M}} \sum_{t \in \mathcal{T}} f_{pmt} y_{pmt} \\ & V = \sum_{p \in \mathcal{P}} \sum_{m \in \mathcal{M}} \sum_{t \in \mathcal{T}} v_{pmt} x_{pmt} \\ & I = \sum_{p \in \mathcal{P}} \sum_{t \in \mathcal{T}} i_{pt} h_{pt} \\ & B = \sum_{p \in \mathcal{P}} \sum_{t \in \mathcal{T}} b_{pt} g_{pt} \\ & h_{p,t-1} - g_{p,t-1} + \sum_{m \in \mathcal{M}^p} x_{pmt} = D_{pt} + h_{pt} - g_{pt}, \quad \forall \ p \in \mathcal{P}, \ \forall \ t \in \mathcal{T} \\ & \sum_{p \in \mathcal{P}: m \in \mathcal{M}^p} \left(\frac{x_{pmt}}{\gamma_{pm}} + \tau_{pmt} y_{pmt} \right) \leq A_{mt}, \quad \forall \ m \in \mathcal{M}, \ \forall \ t \in \mathcal{T} \\ & x_{pmt} \leq \gamma_{pm} A_{mt} y_{pmt} \quad \forall \ p \in \mathcal{P}, \ \forall \ t \in \mathcal{T} \\ & F, V, I, B \in \mathbb{R}^+ \\ & h_{pt}, \ g_{pt} \in \mathbb{R}^+, \quad \forall \ p \in \mathcal{P}, \ \forall \ t \in \mathcal{T} \\ & x_{pmt} \in \mathbb{R}^+, \ y_{pmt} \in \{0,1\}, \quad \forall \ p \in \mathcal{P}, \ \forall \ m \in \mathcal{M}, \ \forall \ t \in \mathcal{T} \end{array}$$

Construction: relax-and-fix-one-product

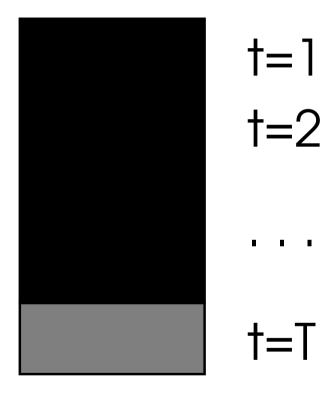
- construction of a solution: based on partial relaxations of the initial problem
- variant of the classic relax-and-fix heuristic



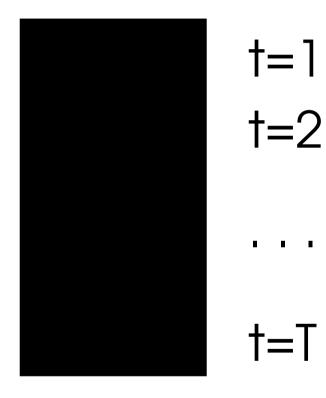
- each period is treated independently
- relax all the variables except those of period 1:
 - keep y_{pm1} integer
 - relax integrity for all other y_{pmt}
- solve this MIP, determining heuristic values for \bar{y}_{pm1}



- each period is treated independently
- relax all the variables except those of period 1:
 - keep y_{pm1} integer
 - relax integrity for all other y_{pmt}
- solve this MIP, determining heuristic values for \bar{y}_{pm1}
- move to the second period:
 - variables of the first period are fixed at $y_{pm1} = \bar{y}_{pm1}$
 - variables y_{pm2} are integer
 - and all the other y_{pmt} relaxed
- this determines the heuristic value for y_{pm2}



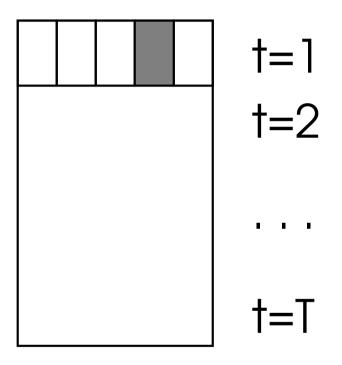
- each period is treated independently
- relax all the variables except those of period 1:
 - keep y_{pm1} integer
 - relax integrity for all other y_{pmt}
- solve this MIP, determining heuristic values for \bar{y}_{pm1}
- move to the second period:
 - variables of the first period are fixed at $y_{pm1}=\bar{y}_{pm1}$
 - variables y_{pm2} are integer
 - and all the other y_{pmt} relaxed
- this determines the heuristic value for y_{pm2}
- these steps are repeated, until all the y variables are fixed



- each period is treated independently
- relax all the variables except those of period 1:
 - keep y_{pm1} integer
 - relax integrity for all other y_{pmt}
- solve this MIP, determining heuristic values for \bar{y}_{pm1}
- move to the second period:
 - variables of the first period are fixed at $y_{pm1}=ar{y}_{pm1}$
 - variables y_{pm2} are integer
 - and all the other y_{pmt} relaxed
- this determines the heuristic value for y_{pm2}
- these steps are repeated, until all the y variables are fixed

Relax-and-fix heuristic.

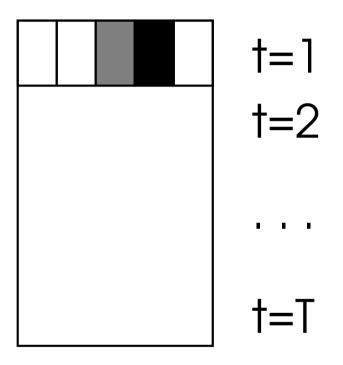
- reported to provide very good solutions for many lot sizing problems
- however, for large instances the exact MIP solution of even a single period can be too time consuming
- we propose a variant were each MIP determines only the variables of one period *that concern* a single product → relax-and-fix-one-product



RELAXANDFIXONEPRODUCT()

- (1) relax all y_{pmt} as continuous variables
- (2) for t = 1 to T
- (3) foreach $p \in \mathcal{P}$
- (4) foreach $m \in \mathcal{M}^p$
- (5) set y_{pmt} as integer
- (6) solve MIP $\rightarrow \bar{y}_{pmt}, \forall m \in \mathcal{M}^p$
- (7) foreach $m \in \mathcal{M}^p$

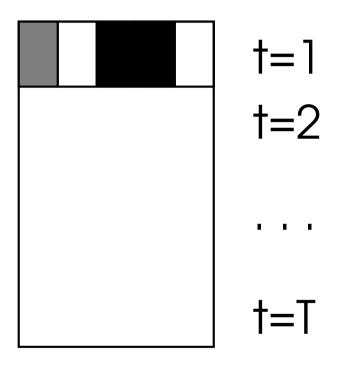
(8) fix
$$y_{pmt} := \bar{y}_{pmt}$$



RELAXANDFIXONEPRODUCT()

- (1) relax all y_{pmt} as continuous variables
- (2) for t = 1 to T
- (3) foreach $p \in \mathcal{P}$
- (4) foreach $m \in \mathcal{M}^p$
- (5) set y_{pmt} as integer
- (6) solve MIP $\rightarrow \bar{y}_{pmt}, \forall m \in \mathcal{M}^p$
- (7) foreach $m \in \mathcal{M}^p$

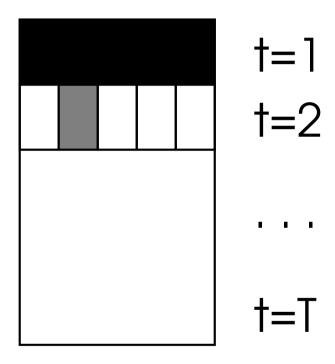
(8) fix
$$y_{pmt} := \bar{y}_{pmt}$$



RELAXANDFIXONEPRODUCT()

- (1) relax all y_{pmt} as continuous variables
- (2) for t = 1 to T
- (3) foreach $p \in \mathcal{P}$
- (4) foreach $m \in \mathcal{M}^p$
- (5) set y_{pmt} as integer
- (6) solve MIP $\rightarrow \bar{y}_{pmt}, \forall m \in \mathcal{M}^p$
- (7) foreach $m \in \mathcal{M}^p$

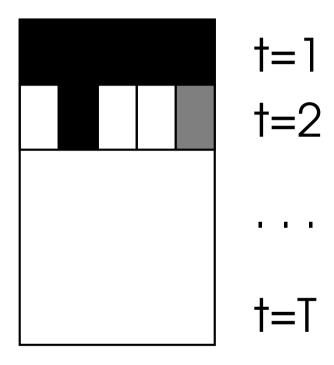
(8) fix
$$y_{pmt} := \bar{y}_{pmt}$$



RELAXANDFIXONEPRODUCT()

- (1) relax all y_{pmt} as continuous variables
- (2) for t = 1 to T
- (3) foreach $p \in \mathcal{P}$
- (4) foreach $m \in \mathcal{M}^p$
- (5) set y_{pmt} as integer
- (6) solve MIP $\rightarrow \bar{y}_{pmt}, \forall m \in \mathcal{M}^p$
- (7) foreach $m \in \mathcal{M}^p$

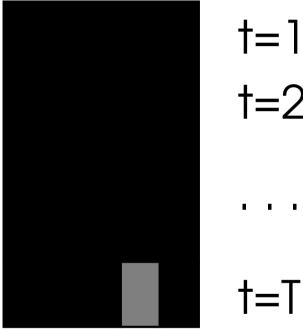
(8) fix
$$y_{pmt} := \bar{y}_{pmt}$$

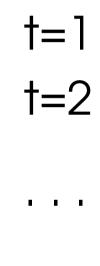


RELAXANDFIXONEPRODUCT()

- (1) relax all y_{pmt} as continuous variables
- (2) for t = 1 to T
- (3) foreach $p \in \mathcal{P}$
- (4) foreach $m \in \mathcal{M}^p$
- (5) set y_{pmt} as integer
- (6) solve MIP $\rightarrow \bar{y}_{pmt}, \forall m \in \mathcal{M}^p$
- (7) foreach $m \in \mathcal{M}^p$

(8) fix
$$y_{pmt} := \bar{y}_{pmt}$$

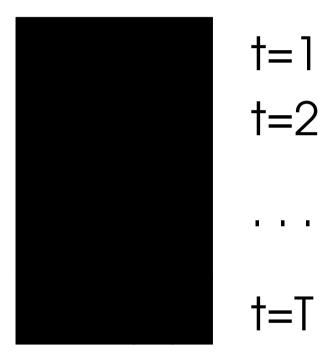




RELAXANDFIXONEPRODUCT()

- (1) relax all y_{pmt} as continuous variables
- (2) for t = 1 to T
- foreach $p \in \mathcal{P}$ (3)
- foreach $m \in \mathcal{M}^p$ (4)
- (5) set y_{pmt} as integer
- solve MIP $ightarrow ar{y}_{pmt}, orall m \in \mathcal{M}^p$ (6)
- foreach $m \in \mathcal{M}^p$ (7)

(8) fix
$$y_{pmt} := \bar{y}_{pmt}$$



. .

RELAXANDFIXONEPRODUCT()

- (1) relax all y_{pmt} as continuous variables
- (2) for t = 1 to T
- foreach $p \in \mathcal{P}$ (3)
- foreach $m \in \mathcal{M}^p$ (4)
- (5) set y_{pmt} as integer
- solve MIP $\rightarrow \bar{y}_{pmt}, \forall m \in \mathcal{M}^p$ (6)
- foreach $m \in \mathcal{M}^p$ (7)

8) fix
$$y_{pmt} := ar{y}_{pmt}$$

(9) return \bar{y}

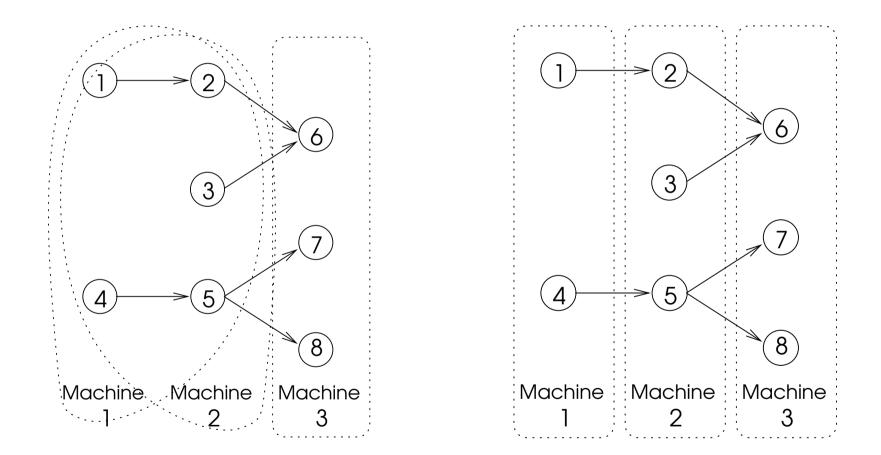
Additional advantage: if repeated, can produce different solutions \longrightarrow repeat it a number of times, retain the best found solution

Scheduling: solution representation

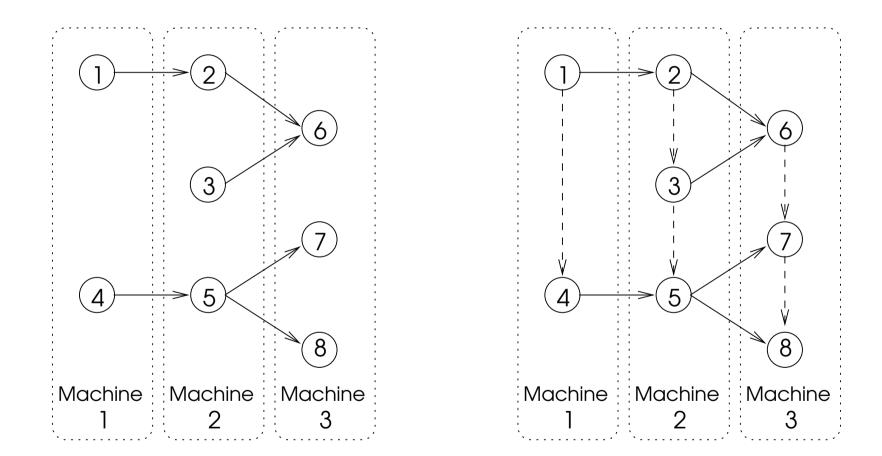
There are two decisions that have to be taken for specifying a scheduling solution:

- Assigning a machine to each operation
- Establish an order for the operations inside each machine

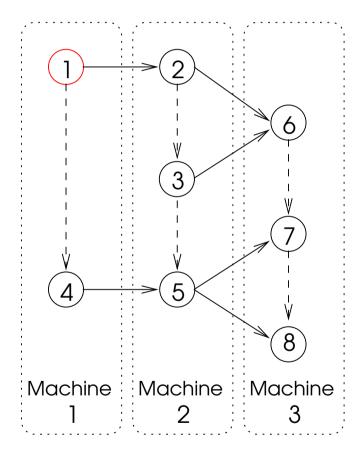
Assigning a machine to each operation



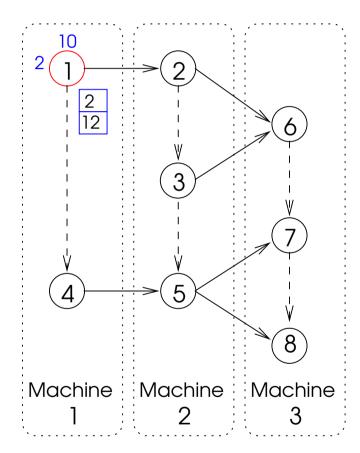
Operation order for each machine



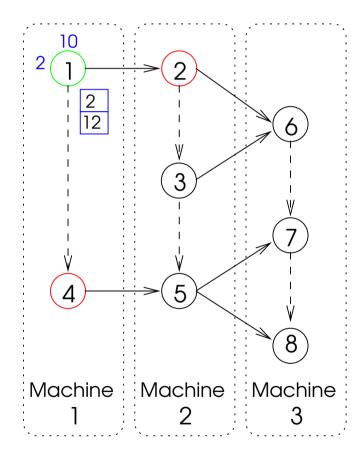
Solution evaluation (computing makespan and cost)



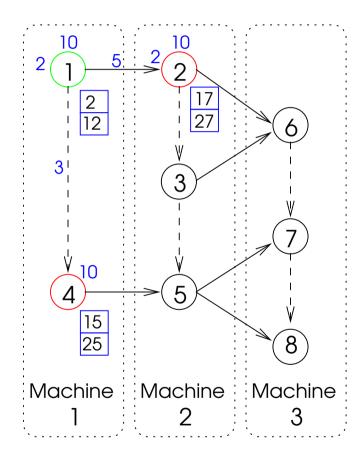
• Start scheduling operations which do not have free (unscheduled) predecessors



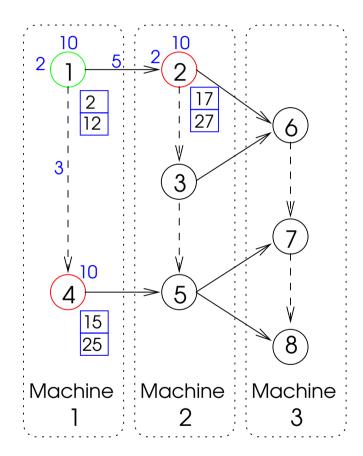
- Start scheduling operations which do not have free (unscheduled) predecessors
- Fix their earliest start time and earliest finish time



- Start scheduling operations which do not have free (unscheduled) predecessors
- Fix their earliest start time and earliest finish time
- Check operations which can now be scheduled

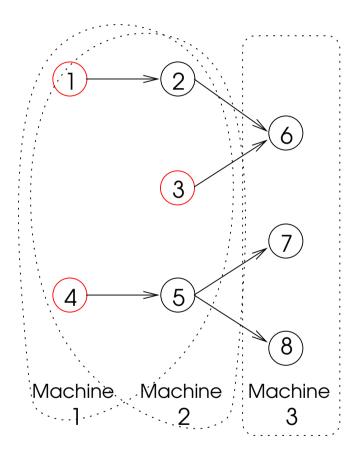


- Start scheduling operations which do not have free (unscheduled) predecessors
- Fix their earliest start time and earliest finish time
- Check operations which can now be scheduled
- Fix their start and finish times
- . . .



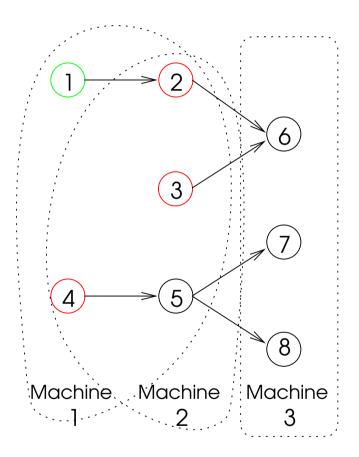
- Start scheduling operations which do not have free (unscheduled) predecessors
- Fix their earliest start time and earliest finish time
- Check operations which can now be scheduled
- Fix their start and finish times
- . . .
- changeover times/costs
- transfer times/costs
- **fixed/variable productions** times/costs

Random solution construction



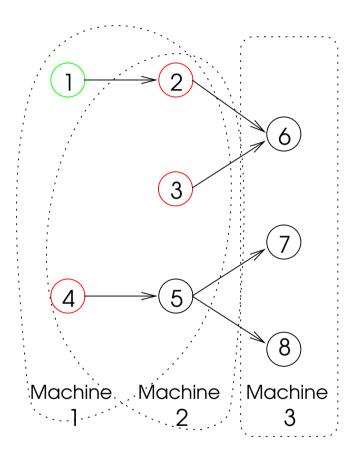
• Check all operations that can be scheduled

Random solution construction



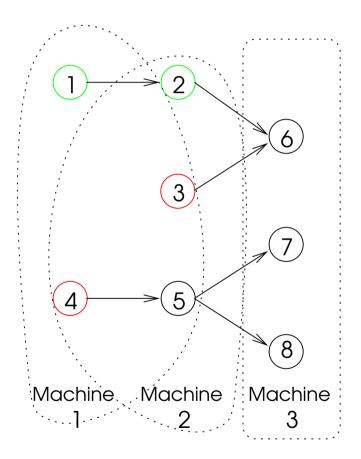
- Check all operations that can be scheduled
- Randomly select one of them (operation 1)
- Randomly select one of the compatible machines (machine 1)
- Fix this operation

Random solution construction



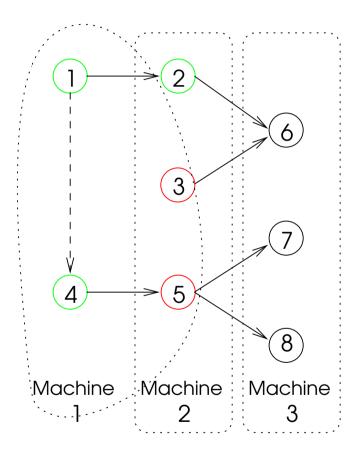
- (operation 1 is fixed on machine 1)
- Check all operations that can be scheduled (operations 2, 3, 4)
- Randomly select one of them (operation 2)
- Randomly select one of the compatible machines (machine 2)
- Fix this operation

Random solution construction



- (operation 1 is fixed on machine 1)
- (operation 2 is fixed on machine 2)
- Check all operations that can be scheduled (opertions 3, 4)
- Randomly select one of them (operation 4)
- Randomly select one of the compatible machines (machine 1)
- Fix this operation

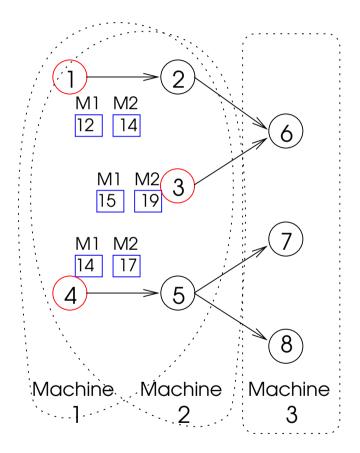
Random solution construction



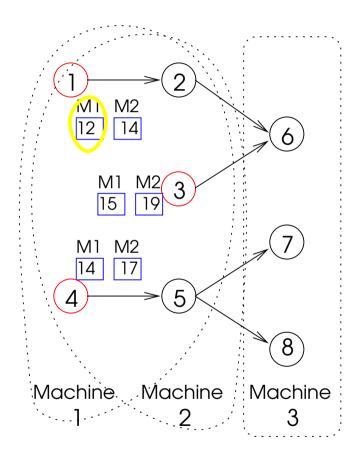
- (operation 1 is fixed on machine 1)
- (operation 2 is fixed on machine 2)
- (operation 4 is fixed on machine 1)
- Check all operations that can be scheduled (opertions 3, 5)
- Randomly select one of them . . .
- Randomly select one of the compatible machines . . .
- . . .
- Until all operations are scheduled

Random solution construction

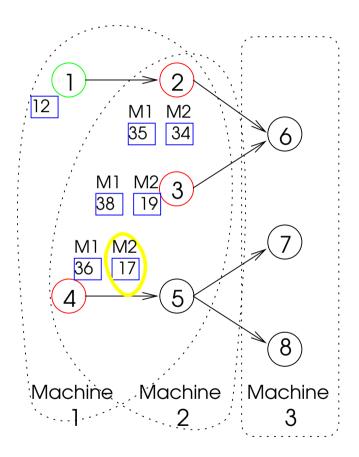
- Produces a random, but feasible solution (except for violation of maximal makespan)
- Very easy to implement
- Can produce many different solutions
- If repeated many times: might obtain a good solution



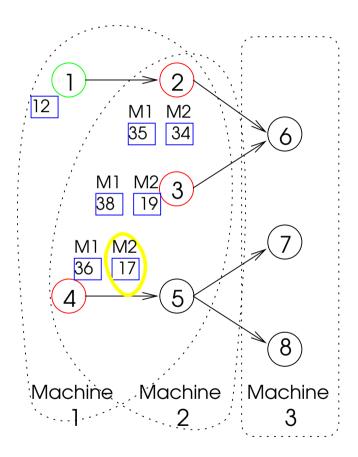
- Check all operations that can be scheduled
- Compute the *current makespan* when they are assigned to each of the possible machines



- Check all operations that can be scheduled
- Compute the *current makespan* when they are assigned to each of the possible machines
- Select the assignment which induces the *smallest* makespan
- Fix this operation

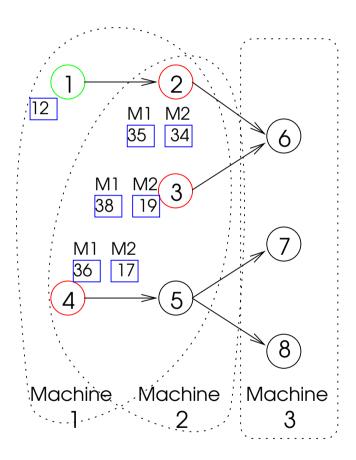


- Check all operations that can be scheduled
- Compute the *current makespan* when they are assigned to each of the possible machines
- Select the assignment which induces the smallest makespan
- Fix this operation



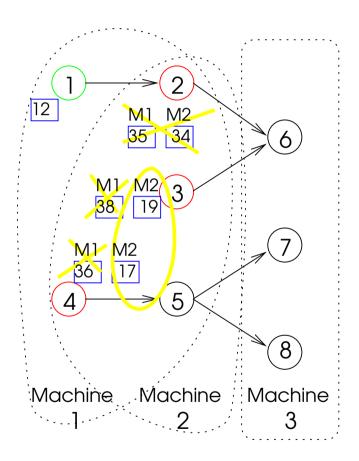
- Check all operations that can be scheduled
- Compute the *current makespan* when they are assigned to each of the possible machines
- Select the assignment which induces the smallest makespan
- Fix this operation
- . . .
- Continue this way until fixing all the operations

Semi-greedy construction



- As in the greedy construction, we check *all the possibilities* for each operation the can be scheduled
- Compute the current makespan for each of these possibilities

Semi-greedy construction



- As in the greedy construction, we check *all the possibilities* for each operation the can be scheduled
- Compute the current makespan for each of these possibilities
- Then, select just the possibilities that satisfy some criterion
- Create a *Restricted Candidate List* (RCL)
- Randomly select an (operation, machine) pair from the RCL
- Fix that operation on that machine
- . . .
- Continue, until fixing all the operations

An algorithm for repeated construction

```
ITERATEDSEMIGREEDY(N,\bar{t})

(1) t^* = \infty

(2) c^* = \infty

(3) for n = 1 to N

(4) x = \text{SEMIGREEDYCONSTRUCT}()

(5) t = \text{MAKESPAN}(x)

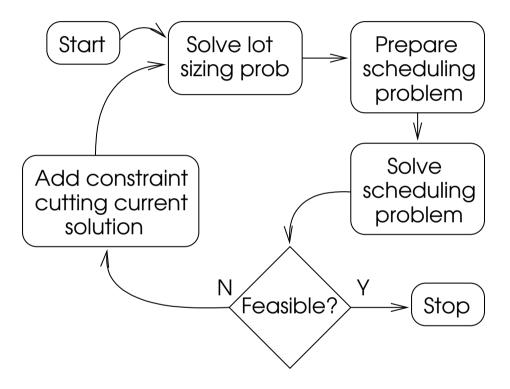
(6) c = \text{COST}(x)

(7) if (t < \bar{t} \text{ and } c < c^*) or (t < t^* \text{ and } t^* > \bar{t})

(8) x^* = x; t^* = t; c^* = c

(9) return x^*
```

Main solution procedure (integration)



"No good" cuts

Let

- $y \in \{0, 1\}$ be a partial MIP solution
- $S = \{r : y_r = 1\}$ represent an assignment of tasks to machines

Then, if scheduling cannot find a feasible solution, add cut:

$$\sum_{r \in S} y_r \le |S| - 1$$

Cuts for capacity adjustment

Let

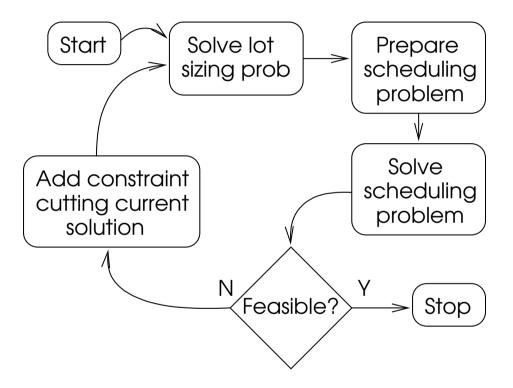
- x_{pmt} be the production of item p on period t, machine k
- \bar{x}_{pmt} last MIP solution for these variables
- I_{mt} the heuristic estimate of machine waiting times

If we cannot find a feasible schedule of the tasks on period t, then

- for the set of machines M^* which did not respect the allowed makespan
- add cut:

$$\sum_{p \in P_m} x_{pmt} \le \sum_{p \in P_m} \bar{x}_{pmt} - I_{mt} \qquad \forall m \in M^*$$

Main solution procedure



Conclusion

- Motivation: industrial application on production planning
- Lot sizing and scheduling: exact solution difficult for both problems
- Integrated model: even more difficult
- Integration of the models has in itself a heuristic component
- Proposed metaheuristics: there is potential for improvement, but
- The method quickly provides implementable solutions
- Results are sufficient for the current practical requirements