
Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Python Crash Course

João Pedro Pedroso

Departmento de Ciência de Computadores
Faculdade de Ciências, Universidade do Porto

jpp@fc.up.pt

Tokyo University of Marine Science and Technology
December 2008

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Compilers and interpreters
Python
A computer program
The first program

Programming languages

Machine languages:
+15829387589
+18490298492
+17204890938

Assembly: elementary operations represented by abbreviations
LOAD X
ADD Y
STORE SOMA

High level languages:
Sum = X + Y

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Compilers and interpreters
Python
A computer program
The first program

Compilers and interpreters

OUTPUTSOURCE

CODE
INTERPRETER

OUTPUT
CODE

OBJECT
EXECUTOR

CODE

SOURCE
COMPILER

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Compilers and interpreters
Python
A computer program
The first program

Python language

High level programming language

Interpreted

May be used in command-line mode or in script mode

Has support for object oriented programming

Convention: program filenames have the extension .py

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Compilers and interpreters
Python
A computer program
The first program

A computer program

input: Get data from the keyboard, a file, or some other device.

output: Display data on the screen or send data to a file or other
device.

math: Perform basic mathematical operations like addition and
multiplication.

conditional execution: Check for certain conditions and execute the
appropriate sequence of statements.

repetition: Perform some action repeatedly, usually with some variation.

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Compilers and interpreters
Python
A computer program
The first program

The first program

print "Hello, World!"

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Evaluating expressions
Operators and operands
Operators and operands
Operations on strings
More...

Values

values: fundamental things manipulated by the programs
>>> print 4
4
>>> type("Hello, World!")
<type ’string’>
>>> type(17)
<type ’int’>

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Evaluating expressions
Operators and operands
Operators and operands
Operations on strings
More...

Variables

variables: names that refer to values
>>> message = "What’s up, Doc?"
>>> n = 17
>>> pi = 3.14159
>>> print message
What’s up, Doc?
>>> print n
17
>>> print pi
3.14159

Variable names must begin with a letter, and may have an arbitrary
number of letters and numbers

The underscore sign _ is treated as a letter

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Evaluating expressions
Operators and operands
Operators and operands
Operations on strings
More...

Statements

Statements: instructions that the Python interpreter can execute

Can be typed on the command line or in scripts

When there are several statements, the results appear one at a time, as
the statements execute
print 1
x = 2
print x

output:
1
2

(the assignment statement produces no output)

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Evaluating expressions
Operators and operands
Operators and operands
Operations on strings
More...

Evaluating expressions I

if we type an expression on the command line, the interpreter evaluates
it and displays the result:
>>> 1 + 1
2

values and variables are considered as expressions
>>> 17
17
>>> x
2

evaluating an expression is not the same thing as printing a value:
>>> message = "What’s up, Doc?"
>>> message
"What’s up, Doc?"
>>> print message
What’s up, Doc?

When Python displays the value of an expression, it uses the same
format you would use to enter a value.

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Evaluating expressions
Operators and operands
Operators and operands
Operations on strings
More...

Evaluating expressions II

In the case of strings, that means that it includes the quotation marks.

But the print statement prints the value of the expression, which in this
case is the contents of the string.

In a script, an expression all by itself is a legal statement, but it doesn’t
do anything. The following script produces no output at all:
17
3.2
"Hello, World!"
1 + 1

How can we change the script to display the values of these four
expressions?

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Evaluating expressions
Operators and operands
Operators and operands
Operations on strings
More...

Arithmetic operations

Operators are special symbols that represent computations like addition
and multiplication.

The values the operator uses are called operands.
20+32 hour-1 hour*60+minute minute/60 5**2 (5+9)*(15-7)

+, -, and /, parenthesis: same meaning as in mathematics

multiplication: *
exponentiation: **
variable names: replaced with their value before the operation is
performed.

Division:
from __future__ import division
minute = 59
print minute/60 # floating point division
print minute//60 # integer division

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Evaluating expressions
Operators and operands
Operators and operands
Operations on strings
More...

Operators and operands

Operation order:

P parenthesis

E exponentiation

MD multiplication, division

AS addition, subtraction

Operators with the same precedence: evaluation from left to right

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Evaluating expressions
Operators and operands
Operators and operands
Operations on strings
More...

Operations on strings

+↔ concatenation
fruit = "banana"
bakedGood = " nut bread"
print fruit + bakedGood

output:
banana nut bread

*↔ repetition
fruit = "banana"
print 2 * fruit

output:
bananabanana

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Evaluating expressions
Operators and operands
Operators and operands
Operations on strings
More...

More...

Composition: combining expressions and statements
print "Number of minutes since midnight: ", hour*60+minute

Comments:
compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

Can also be put at the end of the line:
percentage = (minute * 100) // 60 # caution: integer division

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Type conversion
Math functions
Adding new functions
Parameters and arguments
Conditionals and recursion

Functions

we have already seen an example of a function call:
>>> type("32")
<type ’string’>

name of this function: type

another example: id, returns a unique identifier for a value
>>> id(3)
134882108
>>> betty = 3
>>> id(betty)
134882108

id of a variable: id of the value to which it refers

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Type conversion
Math functions
Adding new functions
Parameters and arguments
Conditionals and recursion

Type conversion

there are built-in functions that convert values from one type to another:
>>> int("32")
32
>>> int(3.99999)
3
>>> int(-2.3)
-2
>>> int("Hello")
ValueError: invalid literal for int(): Hello
>>> float(32)
32.0
>>> float("3.14159")
3.14159
>>> str(32)
’32’
>>> str(3.14149)
’3.14149’

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Type conversion
Math functions
Adding new functions
Parameters and arguments
Conditionals and recursion

Math functions

defined in the module math
>>> import math
>>> math.sqrt(2) / 2.0
0.707106781187
>>> dir(math)
[’__doc__’, ’__file__’, ’__name__’, ’acos’, ’asin’, ’atan’, ’atan2’, ’ceil’, ’cos’, ’cosh’, ’degrees’, ’e’, ’exp’, ’fabs’, ’floor’, ’fmod’, ’frexp’, ’hypot’, ’ldexp’, ’log’, ’log10’, ’modf’, ’pi’, ’pow’, ’radians’, ’sin’, ’sinh’, ’sqrt’, ’tan’, ’tanh’]

composition:
>>> x = math.cos(angle + math.pi/2)

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Type conversion
Math functions
Adding new functions
Parameters and arguments
Conditionals and recursion

Adding new functions

def NAME(LIST OF PARAMETERS):
STATEMENTS

Example:
def newLine():

print

print "First Line."
newLine()
newLine()
newLine()
print "Second Line."

output:
First line.

Second line.

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Type conversion
Math functions
Adding new functions
Parameters and arguments
Conditionals and recursion

Parameters and arguments

def printTwice(bruce):
print bruce, bruce

usage:
>>> printTwice(’Spam’)
Spam Spam
>>> printTwice(5)
5 5
>>> printTwice(3.14159)
3.14159 3.14159
>>> printTwice(’Spam’*4)
SpamSpamSpamSpam SpamSpamSpamSpam
>>> printTwice(math.cos(math.pi))
-1.0 -1.0

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Type conversion
Math functions
Adding new functions
Parameters and arguments
Conditionals and recursion

Variables and parameters are local

a variable created inside a function only exists inside the function
def printTwice(bruce):
print bruce, bruce

>>> printTwice(’Spam’)
Spam Spam
>>> print bruce
Traceback (most recent call last):
File "<stdin>", line 1, in ?

NameError: name ’bruce’ is not defined
>>>

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Type conversion
Math functions
Adding new functions
Parameters and arguments
Conditionals and recursion

Conditionals and recursion

The modulus operator
>>> quotient = 7 // 3
>>> print quotient
2
>>> remainder = 7 % 3
>>> print remainder
1
>>>

to check whether one number is divisible by another:
if x % y is zero, then x is divisible by y.
Boolean expressions
>>> 5 == 5
True
>>> 5 == 6
False

comparison operators:
x != y # x is not equal to y
x > y # x is greater than y
x < y # x is less than y
x >= y # x is greater than or equal to y
x <= y # x is less than or equal to y

Logical operators: value is True or False
Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

The return statement
Recursion
Keyboard input
Fruitful functions
Fibonacci function
Checking types
Functions

Conditional execution

if x > 0:
print "x is positive"

HEADER:
FIRST STATEMENT
...
LAST STATEMENT

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

The return statement
Recursion
Keyboard input
Fruitful functions
Fibonacci function
Checking types
Functions

Alternative execution

if x%2 == 0:
print x, "is even"

else:
print x, "is odd"

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

The return statement
Recursion
Keyboard input
Fruitful functions
Fibonacci function
Checking types
Functions

chained conditionals

if choice == ’A’:
functionA()

elif choice == ’B’:
functionB()

elif choice == ’C’:
functionC()

else:
print "Invalid choice."

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

The return statement
Recursion
Keyboard input
Fruitful functions
Fibonacci function
Checking types
Functions

Nested conditionals

if x == y:
print x, "and", y, "are equal"

else:
if x < y:
print x, "is less than", y

else:
print x, "is greater than", y

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

The return statement
Recursion
Keyboard input
Fruitful functions
Fibonacci function
Checking types
Functions

The return statement

import math

def printLogarithm(x):
if x <= 0:
print "Positive numbers only, please."
return

result = math.log(x)
print "The log of x is", result

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

The return statement
Recursion
Keyboard input
Fruitful functions
Fibonacci function
Checking types
Functions

Recursion

def countdown(n):
if n == 0:
print "Blastoff!"

else:
print n
countdown(n-1)

example:
>>> countdown(3)
3
2
1
Blastoff!

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

The return statement
Recursion
Keyboard input
Fruitful functions
Fibonacci function
Checking types
Functions

Keyboard input

>>> input = raw_input ()
What are you waiting for?
>>> print input
What are you waiting for?

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

The return statement
Recursion
Keyboard input
Fruitful functions
Fibonacci function
Checking types
Functions

Fruitful functions

return values: calling a function may produce a result
e = math.exp(1.0)
height = radius * math.sin(angle)

a function produces a result with return
import math

def area(radius):
temp = math.pi * radius**2
return temp

another example:
def absoluteValue(x):
if x < 0:
return -x

else:
return x

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

The return statement
Recursion
Keyboard input
Fruitful functions
Fibonacci function
Checking types
Functions

Boolean functions

return True or False (or 1 or 0)
def isDivisible(x, y):
return x % y == 0

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

The return statement
Recursion
Keyboard input
Fruitful functions
Fibonacci function
Checking types
Functions

More recursion:

def factorial(n):
if n == 0:
return 1

else:
recurse = factorial(n-1)
result = n * recurse
return result

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

The return statement
Recursion
Keyboard input
Fruitful functions
Fibonacci function
Checking types
Functions

Fibonacci function

def fibonacci (n):
if n == 0 or n == 1:
return 1

else:
return fibonacci(n-1) + fibonacci(n-2)

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

The return statement
Recursion
Keyboard input
Fruitful functions
Fibonacci function
Checking types
Functions

Checking types

what happens if we call factorial and give it 1.5 as an argument?
>>> factorial (1.5)
RuntimeError: Maximum recursion depth exceeded

values of n miss the base case (n == 0)

corrected version:
def factorial (n):
if type(n) != type(1):
print "Factorial is only defined for integers."
return -1

elif n < 0:
print "Factorial is only defined for positive integers."
return -1

elif n == 0:
return 1

else:
return n * factorial(n-1)

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

The return statement
Recursion
Keyboard input
Fruitful functions
Fibonacci function
Checking types
Functions

Functions

what are functions good for?

Giving a name to a sequence of statements makes a program easier to
read and debug.

Dividing a long program into functions allows to separate parts of the
program, debug them in isolation, and then compose them into a whole.

Well-designed functions are often useful for many programs. Once we
write and debug one, we can reuse it.

Functions facilitate both recursion and iteration.

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Iteration: the while statement

recursive version of countdown:
def countdown(n):
if n == 0:
print "Blastoff!"

else:
print n
countdown(n-1)

iterative version with while:
def countdown(n):
while n > 0:
print n
n = n-1

print "Blastoff!"

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Iteration: the while statement

flow of execution for a while statement:
1 Evaluate the condition, yielding False or True.
2 If the condition is False (0), exit the while statement and continue

execution at the next statement.
3 If the condition is True (1), execute each of the statements in the body and

then go back to step 1.

(body: all the statements below the header with the same indentation)

Note: the body must change the value of some variable, so that the
condition becomes false and the loop terminates

Otherwise: infinite loop

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Iteration: the while statement

def sequence(n):
while n != 1:
print n,
if n%2 == 0: # n is even
n = n/2

else: # n is odd
n = n*3+1

When does this function terminate?

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Strings

Strings are different of ints and floats, because they are made of
smaller pieces (characters)
bracket operator: selects a single character from a string
>>> fruit = "banana"
>>> letter = fruit[1]
>>> print letter

what is the output?
the zero-th character of "banana" is b
len function: returns the number of characters in a string
>>> fruit = "banana"
>>> len(fruit)
6

accessing the last element of a string:
length = len(fruit)
last = fruit[length] # ERROR!
length = len(fruit)
last = fruit[length-1]

alternatively: use negative indices
fruit[-1] # yields the last letter
fruit[-2] # yields the second last letter
... Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

The for loop

One way of traversing a string
index = 0
while index < len(fruit):
letter = fruit[index]
print letter
index = index + 1

a simpler syntax: the for loop
for char in fruit:
print char

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

String slices

a segment of a string is called a slice
>>> s = "Peter, Paul, and Mary"
>>> print s[0:5]
Peter
>>> print s[7:11]
Paul
>>> print s[17:21]
Mary

banana string

fruit " b a n na a "

0 1 2 3 4 5 6index

omitting the first or the last indices:
>>> fruit = "banana"
>>> fruit[:3]
’ban’
>>> fruit[3:]
’ana’

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

String comparison

comparison operators work on strings
if word == "banana":
print "Yes, we have no bananas!"

putting words in alphabetical order:
if word < "banana":
print "Your word," + word + ", comes before banana."

elif word > "banana":
print "Your word," + word + ", comes after banana."

else:
print "Yes, we have no bananas!"

problem: in python uppercase letters come before lowercase letters
Your word, Zebra, comes before banana.

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Strings are immutable

greeting = "Hello, world!"
greeting[0] = ’J’ # ERROR!
print greeting

we can’t change an existing string

(one solution:)
greeting = "Hello, world!"
newGreeting = ’J’ + greeting[1:]
print newGreeting

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Functions with strings

the find function
def find(str, ch):
index = 0
while index < len(str):

if str[index] == ch:
return index

index = index + 1
return -1

counting
fruit = "banana"
count = 0
for char in fruit:
if char == ’a’:
count = count + 1

print count

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Built-in functions on strings I

finding characters:
>>> fruit = "banana"
>>> index = fruit.find("a")
>>> print index
1
>>> index = fruit.find("na")
>>> print index
2
>>> index = fruit.find("na", 3)
>>> print index
4

replacing:
>>> r = fruit.replace("na", "pa")
>>> print r
bapapa

changing and checking lower/upper case:

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Built-in functions on strings II

>>> b = fruit.upper()
>>> b
’BANANA’
>>> b.isupper()
True
>>> fruit.isupper()
False

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Lists

a list is an ordered set of values, where each value is identified by an
index

are similar to strings, but list’s elements can have any type

examples:
[10, 20, 30, 40]
["spam", "bungee", "swallow"]
["hello", 2.0, 5, [10, 20]]

nested list: A list within another list

empty list: []

assignment to variables:
vocabulary = ["ameliorate", "castigate", "defenestrate"]
numbers = [17, 123]
empty = []
print vocabulary, numbers, empty
[’ameliorate’, ’castigate’, ’defenestrate’] [17, 123] []

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

range

lists that contain consecutive integers
>>> range(1,5)
[1, 2, 3, 4]
>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 10, 2)
[1, 3, 5, 7, 9]

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Accessing elements

syntax: the same as for accessing characters in strings
>>> numbers = [17, 123]
>>> numbers[0]
17
>>> numbers[-1]
123
>>> numbers[:]
[17, 123]

read or write an element that does not exist: runtime error:
>>> numbers[2] = 5
IndexError: list assignment index out of range
>>> numbers[-2]
17
>>> numbers[-3]
IndexError: list index out of range

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

List membership

in is a boolean operator that tests membership in a sequence
>>> horsemen = [’war’, ’famine’, ’pestilence’, ’death’]
>>> ’pestilence’ in horsemen
True
>>> ’debauchery’ in horsemen
False
>>> ’debauchery’ not in horsemen
True

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Iteration

with while
horsemen = ["war", "famine", "pestilence", "death"]

i = 0
while i < len(horsemen):
print horsemen[i]
i = i + 1

with for
horsemen = ["war", "famine", "pestilence", "death"]

for horseman in horsemen:
print horseman

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Iteration

with for
for VARIABLE in LIST:
BODY

with while
i = 0
while i < len(LIST):
VARIABLE = LIST[i]
BODY
i = i + 1

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Operations on lists

+ operator concatenates lists:
>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> c = a + b
>>> print c
[1, 2, 3, 4, 5, 6]

* operator repeats a list:
>>> [0] * 4
[0, 0, 0, 0]
>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

List slices

>>> list = [’a’, ’b’, ’c’, ’d’, ’e’, ’f’]
>>> list[1:3]
[’b’, ’c’]
>>> list[:4]
[’a’, ’b’, ’c’, ’d’]
>>> list[3:]
[’d’, ’e’, ’f’]
>>> list[:]
[’a’, ’b’, ’c’, ’d’, ’e’, ’f’]

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Lists are mutable

>>> fruit = ["banana", "apple", "quince"]
>>> fruit[0] = "pear"
>>> fruit[-1] = "orange"
>>> print fruit
[’pear’, ’apple’, ’orange’]

...

>>> list = [’a’, ’b’, ’c’, ’d’, ’e’, ’f’]
>>> list[1:3] = [’x’, ’y’]
>>> print list
[’a’, ’x’, ’y’, ’d’, ’e’, ’f’]

...

>>> list = [’a’, ’b’, ’c’, ’d’, ’e’, ’f’]
>>> list[1:3] = []
>>> print list
[’a’, ’d’, ’e’, ’f’]

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

List deletion

>>> list = [’a’, ’b’, ’c’, ’d’, ’e’, ’f’]
>>> del list[0]
>>> list
[’b’, ’c’, ’d’, ’e’, ’f’]
>>> del list[1:3]
>>> list
[’b’, ’e’, ’f’]

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Built-in functions on lists I

appending:
>>> r = [1,2,3]
>>> r.append(1)
>>> r
[1, 2, 3, 1]

sorting
>>> r = [3,1,4,2,6,5]
>>> r.sort()
>>> r
[1, 2, 3, 4, 5, 6]

counting elements:
>>> a = [1,2,3,1,2,2]
>>> a.count(2)
3

removing elements:

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Built-in functions on lists II

>>> r = [1,2,3,1,2,3]
>>> r.remove(2)
>>> r
[1, 3, 1, 2, 3]
>>> r.remove(2)
>>> r
[1, 3, 1, 3]

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Objects and values I

the following assignment might lead to two possible states
a = "banana"
b = "banana"

a

b

"banana"

"banana"

a

b
"banana"

we can check this with id:
>>> id(a)
135044008
>>> id(b)
135044008

(a and b refer to the same string)

lists behave differently:

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Objects and values II

>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> id(a)
135045528
>>> id(b)
135041704

a

b

[1, 2, 3]

[1, 2, 3]

a and b have the same value but do not refer to the same object

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Aliasing

if we assign one variable to another, both variables refer to the same
object:
>>> a = [1, 2, 3]
>>> b = a

a

b
[1, 2, 3]

as the same list has two different names, a and b, we say that it is
aliased
changes made with one alias affect the other:
>>> b[0] = 5
>>> print a
[5, 2, 3]

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Cloning lists

if we want to modify a list and also keep a copy of the original, we need
to be able to make a copy (cloning)
>>> a = [1, 2, 3]
>>> b = a[:]
>>> print b
[1, 2, 3]
>>> b[0] = 5
>>> print a
[1, 2, 3]

another possibility for cloning:
>>> b = list(a)

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

List parameters

passing a list as an argument actually passes a reference to the list, not
a copy of the list
def deleteHead(list):
del list[0]

...

>>> numbers = [1, 2, 3]
>>> deleteHead(numbers)
>>> print numbers
[2, 3]

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Matrices

nested lists are often used to represent matrices
1 2 3

7 8 9

4 5 6

>>> matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
>>> matrix[1]
[4, 5, 6]
>>> matrix[1][1]
5

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

Strings and lists

there are some useful functions for dealing with lists and strings

splitting
>>> a = "tokyo osaka kyoto"
>>> a.split()
[’tokyo’, ’osaka’, ’kyoto’]
>>> a.split(’k’)
[’to’, ’yo osa’, ’a ’, ’yoto’]

splitting
>>> wines = [’port’, ’champagne’, ’bordeaux’]
>>> " ".join(wines)
’port champagne bordeaux’
>>> " + ".join(wines)
’port + champagne + bordeaux’

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Strings
The for loop
Operations on strings
Lists
Iteration
Operations on lists
Objects and values

formating strings

formating strings: the % operator (again!)
>>> for i in range(5):
... print "format: %3d %10f %10s" % (i, 1/(i+1), str(i*100))
...
format: 0 1.000000 0
format: 1 0.500000 100
format: 2 0.333333 200
format: 3 0.250000 300
format: 4 0.200000 400

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Mutability and tuples

a tuple that is similar to a list, but it is immutable
syntax: comma-separated list of values
>>> t = ’a’, ’b’, ’c’, ’d’, ’e’
>>> t = (’a’, ’b’, ’c’, ’d’, ’e’) # equivalent representation

for creating a tuple with a single element:
>>> t1 = (’a’,) # a tuple
>>> type(t1)
<type ’tuple’>
>>> t2 = (’a’) # a string in parenthesis
>>> type(t2)
<type ’string’>

accessing elements: as in lists:
>>> t = (’a’, ’b’, ’c’, ’d’, ’e’)
>>> t[0]
’a’
>>> t[1:3]
(’b’, ’c’)

if we try to modify an element, we get an error:
>>> t[0] = ’A’
TypeError: object doesn’t support item assignment

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

tuple assignment

to swap the values of two variables
>>> temp = a
>>> a = b
>>> b = temp

with tuple assignment:
>>> a, b = b, a

the number of variables on the left and the number of values on the right
have to be the same:
>>> a, b, c, d = 1, 2, 3
ValueError: unpack tuple of wrong size

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Tuples as return values

functions can return tuples as return values
def f(x):
sum = 0
max = x[0]
for i in x:
sum += i
if i > max:

max = i
return sum, max

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Dictionaries

strings, lists, and tuples use integers as indices

dictionaries are similar, but they can use any immutable type as an
index

empty dictionary: represented by {}
>>> eng2sp = {}
>>> eng2sp[’one’] = ’uno’
>>> eng2sp[’two’] = ’dos’
>>> print eng2sp
{’one’: ’uno’, ’two’: ’dos’}

another way:
>>> eng2sp = {’one’: ’uno’, ’two’: ’dos’, ’three’: ’tres’}

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Dictionary operations

deletion
>>> inventory = {’apples’: 430, ’bananas’: 312, ’oranges’: 525,
’pears’: 217}
>>> print inventory
{’oranges’: 525, ’apples’: 430, ’pears’: 217, ’bananas’: 312}
>>> del inventory[’pears’]
>>> print inventory
{’oranges’: 525, ’apples’: 430, ’bananas’: 312}

change:
>>> inventory[’apples’] = 0
>>> print inventory
{’oranges’: 525, ’apples’: 0, ’bananas’: 312}

len function returns the number of key-value pairs:
>>> len(inventory)
3

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Built-in functions on dictionaries I

keys returns a list of the keys of the dictionary
>>> eng2sp.keys()
[’one’, ’three’, ’two’]

values returns a list of the values in the dictionary:
>>> eng2sp.values()
[’uno’, ’tres’, ’dos’]

items returns a list of tuples, one for each key-value pair:
>>> eng2sp.items()
[(’one’,’uno’), (’three’, ’tres’), (’two’, ’dos’)]

has_key takes a key and returns True if the key appears in the
dictionary:
>>> eng2sp.has_key(’one’)
True
>>> eng2sp.has_key(’deux’)
False

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

copying dictionaries

as dictionaries are mutable (as for lists), we need to be aware of aliasing

whenever two variables refer to the same object, changes to one affect
the other
>>> opposites = {’up’: ’down’, ’right’: ’wrong’, ’true’: ’false’}
>>> alias = opposites
>>> copy = opposites.copy()
>>> alias[’right’] = ’left’
>>> opposites[’right’]
’left’
>>> copy[’right’] = ’privilege’
>>> opposites[’right’]
’left’

another possibility for copying:
>>> copy = dict(opposites)

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Sparse matrices

sparse matrices have most of their elements equal to zero
lists of lists might not be the appropriate way to represent them
matrix = [[0,0,0,1,0],

[0,0,0,0,0],
[0,2,0,0,0],
[0,0,0,0,0],
[0,0,0,3,0]]

using dictionaries is more economical:
>>> matrix = {(0,3): 1, (2, 1): 2, (4, 3): 3}
>>> matrix[0,3]
1

accessing elements which are not stored in the dictionary gives an error:
>>> matrix[1,3]
KeyError: (1, 3)

solution: get method
>>> matrix.get((0,3), 0)
1
>>> matrix.get((1,3), 0)
0

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Fibonacci again I

fibonacci

n 4

fibonacci

n 3

fibonacci

n 2

fibonacci

n 0

fibonacci

n 1

fibonacci

n 1

fibonacci

n 2

fibonacci

n 0

fibonacci

n 1

fibonacci(0) and fibonacci(1) are called many times!

solution: is to keep track of values that have already been computed by
storing them in a dictionary

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Fibonacci again II

previous = {0:1, 1:1}

def fibonacci(n):
if previous.has_key(n):
return previous[n]

else:
newValue = fibonacci(n-1) + fibonacci(n-2)
previous[n] = newValue
return newValue

computation is now much quicker:
>>> fibonacci(50)
20365011074L
>>> fibonacci(500)
225591516161936330872512695036072072046011324913758190588638866418474627738686883405015987052796968498626L

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

Random numbers

in some applications (like games) we want the computer to be
unpredictable
we can generate random numbers and use them to determine the
outcome of the program
Python provides a pseudo-random generator in the module random
import random
def randomList(n):
s = [0] * n
for i in range(n):

s[i] = random.random()
return s

>>> randomList(8)
0.15156642489
0.498048560109
0.810894847068
0.360371157682
0.275119183077
0.328578797631
0.759199803101
0.800367163582

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

For Further Reading

Object oriented programming

we can define new types, using the class keyword:
class Point:
pass

...

>>> blank = Point()
>>> blank.x = 3.0
>>> blank.y = 4.0

x

y

3.0

4.0

blank

>>> print blank.y
4.0
>>> x = blank.x
>>> print x
3.0

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

For Further Reading

Example: a class for representing time

class Time:
pass

def printTime(time):
print str(time.hours) + ":" +

str(time.minutes) + ":" +
str(time.seconds)

...
>>> currentTime = Time()
>>> currentTime.hours = 9
>>> currentTime.minutes = 14
>>> currentTime.seconds = 30
>>> printTime(currentTime)

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

For Further Reading

Methods: functions defined in a class

class Time:
def printTime(time):
print str(time.hours) + ":" +

str(time.minutes) + ":" +
str(time.seconds)

...
>>> currentTime.printTime()

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

For Further Reading

Special methods

initialization:
class Time:
def __init__(self, hours=0, minutes=0, seconds=0):
self.hours = hours
self.minutes = minutes
self.seconds = seconds

the __init__ method is called whenever we create a Time object:
>>> currentTime = Time(9, 14, 30)
>>> currentTime.printTime()
>>> 9:14:30

because the parameters are optional, we can omit them:
>>> currentTime = Time()
>>> currentTime.printTime()
>>> 0:0:0

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

For Further Reading

More attributes on the point class

class Point:
def __init__(self, x=0, y=0):
self.x = x
self.y = y

def __str__(self):
return ’(’ + str(self.x) + ’, ’ + str(self.y) + ’)’

...
>>> p = Point(3, 4)
>>> print p
(3, 4)

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

For Further Reading

Object oriented features

Some times, the programs are more clean without object-orientations

Other times, object orientation simplifies a lot the operations

We must decide case-by-case which is more appropriate

Python Crash Course

Programming languages
Variables, expressions and statements

Functions
Conditional execution
Iteration, strings, lists

Tuples, dictionaries, files and exceptions
Object oriented programming

For Further Reading

For Further Reading

Allen B. Downey, Jeffrey Elkner, and Chris Meyers.
How to think like a computer scientist.
http://www.thinkpython.com

Guido van Rossum et al.
Python documentation
http://www.python.org

Python Crash Course

	Programming languages
	Compilers and interpreters
	Python
	A computer program
	The first program

	Variables, expressions and statements
	Evaluating expressions
	Operators and operands
	Operators and operands
	Operations on strings
	More...

	Functions
	Type conversion
	Math functions
	Adding new functions
	Parameters and arguments
	Conditionals and recursion

	Conditional execution
	The return statement
	Recursion
	Keyboard input
	Fruitful functions
	Fibonacci function
	Checking types
	Functions

	Iteration, strings, lists
	Strings
	The for loop
	Operations on strings
	Lists
	Iteration
	Operations on lists
	Objects and values

	Tuples, dictionaries, files and exceptions
	Object oriented programming
	For Further Reading

