AI&数理最適化技術を用いたサプライチェーン最適化 - ログ・オプト -
研究者および技術者のプロフェッショナル集団です.
  • Home
  • Products
    • SCMOPT デモ&トライアル
    • サプライチェーン最適化システムSCMOPT
      • サプライ・チェイン基本分析
      • サプライ・チェインリスク分析
      • 需要予測
      • 需要予測+動的発注方策
      • 安全在庫最適化
      • 配送最適化
      • 幹線輸送ネットワーク最適化
      • ロジスティクス・ネットワーク最適化
      • 生産ロット最適化
      • 生産スケジューリング最適化システム
      • 人員配置(シフト)最適化
      • ダイナミックプライシング/収益最適化
    • 最適化ソルバー
      • 制約最適化ソルバーSCOP
      • スケジューリング最適化ソルバーOptSeq
      • 数理最適化ソルバーGurobi Optimizer
      • 数理最適化ソルバーCOPT
      • 配送最適化ソルバーMETRO
      • 集合被覆最適化ソルバーOptCover
  • Solutions
    • 分野別ソリューション
      • サプライ・チェイン
      • マーケティング
      • その他分野
    • コンサルティング
  • News/Blog
  • Resource
  • About us
    • 会社概要
    • プライバシーポリシー
    • 情報セキュリティポリシー
    • SCMOPTセキュリティー
    • 商品・サービス利用規約
  • Contact Us
    • お問い合わせ
    • 無料書籍申し込みフォーム
研究者および技術者のプロフェッショナル集団です
   

CHINESE ENGLISH

  • ENGLISH
  • CHINESE
pct184520140904114551
2019-04-19

野々部教授の講演ビデオ

最適化

弊社技術顧問の野々部宏司教授が2015年度の最適化セミナーでご講演された内容です.

スケジューリング最適化ソルバーOptSeqの作者の1人でもあられる先生が,資源制約付きスケジューリング問題に対するモデルの拡張を分かりやすく解説されています.

前半
後半
深層学習の歴史(パーセプトロンからTuring賞まで) 実務的な需要予測手法

Related Posts

News, Python, その他, 実務, 最適化

「書籍」Pythonによる実務で役立つ最適化問題100+

AI, SCMOPT, サプライ・チェイン, 実務, 最適化

サプライチェーンリスク解析の最先端

AI, SCMOPT, サプライ・チェイン, 実務, 最適化

Amazonを支えているアナリティックス

カテゴリー

  • AI
  • News
  • Python
  • SCMOPT
  • サプライ・チェイン
  • その他
  • 可視化
  • 実務
  • 最適化
AI&数理最適化技術を用いたサプライチェーン最適化 - ログ・オプト -
Copyright © 2019 Log Opt Co., Ltd.